Estimates of Lifespan and Blow-up Rates for the Wave Equation with a Time-dependent Damping and a Power-type Nonlinearity

被引:14
|
作者
Fujiwara, Kazumasa [1 ]
Ikeda, Masahiro [2 ]
Wakasugi, Yuta [3 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan
[2] Keio Univ, Fac Sci & Technol, Dept Math, Ctr Adv Intelligence Project,RIKEN,Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[3] Ehime Univ, Grad Sch Sci & Engn, Dept Engn Prod & Environm, 3 Bunkyo Cho, Matsuyama, Ehime 7908577, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2019年 / 62卷 / 02期
基金
日本学术振兴会;
关键词
Damped wave equation; Lifespan estimate; Blow-up rate; ASYMPTOTIC PROFILES; SCALING VARIABLES; CRITICAL EXPONENT; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; LEQUATION; BEHAVIOR;
D O I
10.1619/fesi.62.157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study estimates of lifespan and blow-up rates of solutions for the Cauchy problem of the wave equation with a time -dependent damping and a power type non-linearity. When the damping acts on the solutions effectively, and the non linearity belongs to the subcritical case, we show the sharp lifespan estimates and the blow-up rates of solutions. The upper estimates are proved by an ODE argument, and the lower estimates are given by a method of scaling variables.
引用
收藏
页码:157 / 189
页数:33
相关论文
共 50 条
  • [21] Blow-up for a system with time-dependent generators
    Perez, Aroldo
    Villa, Jose
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 7 : 207 - 215
  • [22] Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity
    Yang, Hui
    Han, Yuzhu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 569 - 589
  • [23] Complete blow-up phenomenon for the heat equation with power nonlinearity
    Matos, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04): : 297 - 302
  • [24] BLOW-UP OF SOLUTIONS TO A VISCOELASTIC WAVE EQUATION WITH NONLOCAL DAMPING
    Li, Donghao
    Zhang, Hongwei
    Liu, Shuo
    Hu, Qingiyng
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 2017 - 2031
  • [25] Blow-Up Time of Solutions for a Parabolic Equation with Exponential Nonlinearity
    Wang, Yanjin
    Qian, Jianzhen
    MATHEMATICS, 2022, 10 (16)
  • [26] Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping
    Peng, Xiaoming
    Shang, Yadong
    Zheng, Xiaoxiao
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 66 - 73
  • [27] Blow-up and lifespan estimate to a nonlinear wave equation in Schwarzschild spacetime
    Lai, Ning-An
    Zhou, Yi
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 173 : 172 - 194
  • [28] Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping
    Peng, Xiaoming
    Zheng, Xiaoxiao
    Shang, Yadong
    AIMS MATHEMATICS, 2018, 3 (04): : 514 - 523
  • [29] SOLITON AND BLOW-UP SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-HARTREE EQUATION
    Genev, Hristo
    Venkov, George
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05): : 903 - 923
  • [30] BLOW-UP AND LIFESPAN ESTIMATE FOR WAVE EQUATIONS WITH CRITICAL DAMPING TERM OF SPACE-DEPENDENT TYPE RELATED TO GLASSEY CONJECTURE
    Fino, Ahmad Z.
    Hamza, Mohamed Ali
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1383 - 1400