Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control

被引:259
|
作者
Wang, Xing-Yuan [1 ]
Song, Jun-Mei [1 ]
机构
[1] Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order hyperchaos Lorenz system; Activation feedback control; Chaotic synchronization; CHAOS SYNCHRONIZATION; CHUAS SYSTEM;
D O I
10.1016/j.cnsns.2009.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the stability theory of fractional order systems, this paper analyses the synchronization conditions of the fractional order chaotic systems with activation feedback method. And the synchronization of commensurate order hyperchaotic Lorenz system of the base order 0.98 is implemented based on this method. Numerical simulations show the effectiveness of this method in a class of fractional order chaotic systems. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3351 / 3357
页数:7
相关论文
共 50 条
  • [31] Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems
    Ammar Soukkou
    Abdelkrim Boukabou
    Salah Leulmi
    Nonlinear Dynamics, 2016, 85 : 2183 - 2206
  • [32] Synchronization of Fractional-Order Systems of the Lorenz type: The Non-adaptive Case
    Delgado, E.
    Duarte, M. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (03) : 410 - 415
  • [33] Projective Synchronization in Coupled Integral and Fractional Order Hyper-chaotic Lorenz Systems
    Xing Lifen
    Shang Gang
    Liu Jie
    Li Xinjie
    Dong Pengzhen
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 194 - 197
  • [34] Hybrid control of synchronization of fractional order nonlinear systems
    Mohadeszadeh, Milad
    Pariz, Naser
    ASIAN JOURNAL OF CONTROL, 2021, 23 (01) : 412 - 422
  • [35] Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems
    Soukkou, Ammar
    Boukabou, Abdelkrim
    Goutas, Ahcene
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (07) : 679 - 713
  • [36] Adaptive control and synchronization of Lorenz systems
    Liao, TL
    Lin, SH
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (06): : 925 - 937
  • [37] Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system
    Sun, Keihui
    Liu, Xuan
    Zhu, Congxu
    Sprott, J. C.
    NONLINEAR DYNAMICS, 2012, 69 (03) : 1383 - 1391
  • [38] Nonlinear feedback mismatch synchronization of Lorenz chaotic systems
    School of Science, Southern Yangtze Univ., Wuxi 214122, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2007, 8 (1346-1348):
  • [39] Synchronization of the Lorenz system through continuous feedback control
    Malescio, G
    PHYSICAL REVIEW E, 1996, 53 (06): : 6566 - 6568
  • [40] Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system
    Keihui Sun
    Xuan Liu
    Congxu Zhu
    J. C. Sprott
    Nonlinear Dynamics, 2012, 69 : 1383 - 1391