Uncovering hidden states in African lion movement data using hidden Markov models

被引:6
|
作者
Goodall, Victoria L. [1 ,2 ]
Ferreira, Sam M. [3 ]
Funston, Paul J. [4 ]
Maruping-Mzileni, Nkabeng [5 ]
机构
[1] Nelson Mandela Univ, Dept Stat, POB 77000, ZA-6031 Port Elizabeth, South Africa
[2] Nelson Mandela Univ, Zool Dept, Ctr African Conservat Ecol, POB 77000, ZA-6031 Port Elizabeth, South Africa
[3] SANParks, Sci Serv, Private Bag X402, ZA-1350 Skukuza, South Africa
[4] Panthera, 8th West 40th St, New York, NY USA
[5] SANParks, Sci Serv Kimberley, POB 110040, ZA-8306 Kimberley, South Africa
基金
新加坡国家研究基金会;
关键词
behaviour; Panthera leo; state validation; POPULATION-DYNAMICS; SPACE MODELS; BEHAVIOR; ECOLOGY; PREY; PERFORMANCE; CARNIVORES; PATTERNS; COLLARS;
D O I
10.1071/WR18004
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Context Direct observations of animals are the most reliable way to define their behavioural characteristics; however, to obtain these observations is costly and often logistically challenging. GPS tracking allows finer-scale interpretation of animal responses by measuring movement patterns; however, the true behaviour of the animal during the period of observation is seldom known. Aims The aim of our research was to draw behavioural inferences for a lioness with a hidden Markov model and to validate the predicted latent-state sequence with field observations of the lion pride. Methods We used hidden Markov models to model the movement of a lioness in the Kruger National Park, South Africa. A three-state log-normal model was selected as the most suitable model. The model outputs are related to collected data by using an observational model, such as, for example, a distribution for the average movement rate and/or direction of movement that depends on the underlying model states that are taken to represent behavioural states of the animal. These inferred behavioural states are validated against direct observation of the pride's behaviour. Key results Average movement rate provided a useful alternative for the application of hidden Markov models to irregularly spaced GPS locations. The movement model predicted resting as the dominant activity throughout the day, with a peak in the afternoon. The local-movement state occurred consistently throughout the day, with a decreased proportion during the afternoon, when more resting takes place, and an increase towards the early evening. The relocating state had three peaks, namely, during mid-morning, early evening and about midnight. Because of the differences in timing of the direct observations and the GPS locations, we had to compare point observations of the true behaviour with an interval prediction of the modelled behavioural state. In 75% of the cases, the model-predicted behaviour and the field-observed behaviour overlapped. Conclusions Our data suggest that the hidden Markov modelling approach is successful at predicting a realistic behaviour of lions on the basis of the GPS location coordinates and the average movement rate between locations. The present study provided a unique opportunity to uncover the hidden states and compare the true behaviour with the inferred behaviour from the predicted state sequence. Implications Our results illustrated the potential of using hidden Markov models with movement rate as an input to understand carnivore behavioural patterns that could inform conservation management practices.
引用
收藏
页码:296 / 303
页数:8
相关论文
共 50 条
  • [31] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [32] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 795 - 796
  • [33] SIGNAL DENOISING WITH HIDDEN MARKOV MODELS USING HIDDEN MARKOV TREES AS OBSERVATION DENSITIES
    Milone, Diego H.
    Di Persia, Leandro E.
    Tomassi, Diego R.
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 374 - 379
  • [34] Hidden Markov models for multivariate panel data
    Neal, Mackenzie R.
    Sochaniwsky, Alexa A.
    Mcnicholas, Paul D.
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [35] MIXTURE OF HIDDEN MARKOV MODELS FOR ACCELEROMETER DATA
    de Chaumaray, Marie Du Roy
    Marbac, Matthieu
    Navarro, Fabien
    ANNALS OF APPLIED STATISTICS, 2020, 14 (04): : 1834 - 1855
  • [36] Bayesian Hidden Markov Models for Financial Data
    Castellano, Rosella
    Scaccia, Luisa
    DATA ANALYSIS AND CLASSIFICATION, 2010, : 453 - 461
  • [37] Hidden Markov models for extended batch data
    Cowen, Laura L. E.
    Besbeas, Panagiotis
    Morgan, Byron J. T.
    Schwarz, Carl J.
    BIOMETRICS, 2017, 73 (04) : 1321 - 1331
  • [38] Hidden Markov Models for multivariate functional data
    Martino, Andrea
    Guatteri, Giuseppina
    Paganoni, Anna Maria
    STATISTICS & PROBABILITY LETTERS, 2020, 167
  • [39] Hidden Markov models
    Eddy, SR
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (03) : 361 - 365
  • [40] Joint modelling of multi-scale animal movement data using hierarchical hidden Markov models
    Adam, Timo
    Griffiths, Christopher A.
    Leos-Barajas, Vianey
    Meese, Emily N.
    Lowe, Christopher G.
    Ackwell, Paul G. B.
    Righton, David
    Langrock, Roland
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (09): : 1536 - 1550