Enhanced sucrose-mediated cryoprotection of siRNA-loaded poly (lactic-co-glycolic acid) nanoparticles

被引:0
|
作者
Youm, Ibrahima [1 ]
West, Matthew B. [1 ]
Huang, Xiangping [1 ]
Li, Wei [1 ]
Kopke, Richard D. [1 ,2 ,3 ]
机构
[1] Hough Ear Inst, Oklahoma City, OK 73112 USA
[2] Univ Oklahoma Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK USA
[3] Univ Oklahoma Hlth Sci Ctr, Otolaryngol, Oklahoma City, OK USA
关键词
SiRNA; PLGA; Nanoparticles; Sucrose; Cryoprotection; Drug delivery; Cellular uptake; PLGA-BASED NANOPARTICLES; GLASS-TRANSITION; DELIVERY; RELEASE; STABILIZATION; MECHANISMS; STABILITY; SURFACE;
D O I
10.1016/j.colsurfb.2022.112880
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The present study aimed to determine the effects of sucrose on the physical stability, cellular entry pathways and functional efficacy of poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs). PLGA-NPs were synthesized in the absence or presence of 10 % sucrose, using HEI-101, an unmodified small interfering RNA (siRNA), as a drug model. The newly synthesized HEI-101-loaded PLGA-NPs (HEI-101-NPs) were exposed to repeated freeze-thaw cycles and iteratively tested over a six-month evaluation period. The effect of sucrose stabilization on HEI-101NPs was independently tested in vitro for biocompatibility and cellular uptake in IMO-2B1 cells. Data analyses suggest that, without sucrose, freeze-thaw cycles of HEI-101-NPs resulted in increased particle diameter, increased polydispersity index, and reduced zeta potential. In contrast, a substantial improvement in the physical stability of HEI-101-NPs was observed in the presence of 10 % sucrose. The data revealed that the release of HEI101 from the PLGA-NPs was governed by polymer erosion and drug diffusion. Data from cellular uptake study in IMO-2B1 cells demonstrated that, 10 % sucrose significantly reduced the inhibitory effect of nocodazole on the microtubule-dependent uptake of PLGA-NPs. In addition, the presence of 10 % sucrose seemed to lessen the inhibitory effect of sodium azide on the energy-dependent uptake of PLGA-NPs. Overall, the current data suggest that the cellular internalization of PLGA-NPs occurred through the polymerization of actin filaments under the control of the microtubules. Our findings reveal cryoprotective effect of 10 % sucrose on HEI-101-NPs that confers marked improvements in the stability, cellular uptake and efficiency for the delivery of biomolecules to inner ear cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles
    Elmowafy E.M.
    Tiboni M.
    Soliman M.E.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 347 - 380
  • [22] Sequenced poly(lactic-co-glycolic acid) copolymers
    Meyer, Tara Y.
    Weiss, Ryan M.
    Washington, Michael A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [23] Intracellular Drug Delivery by Poly(lactic-co-glycolic acid) Nanoparticles, Revisited
    Xu, Peisheng
    Gullotti, Emily
    Tong, Ling
    Highley, Christopher B.
    Errabelli, Divya R.
    Hasan, Tayyaba
    Cheng, Ji-Xin
    Kohane, Daniel S.
    Yeo, Yoon
    MOLECULAR PHARMACEUTICS, 2009, 6 (01) : 190 - 201
  • [24] Chitosan-Coated Poly(lactic-co-glycolic acid) Nanoparticles Loaded with Ursolic Acid for Breast Cancer Therapy
    Payomhom, Pattaree
    Panyain, Nattawadee
    Sakonsinsiri, Chadamas
    Wongtrakoongate, Patompon
    Lertsuwan, Kornkamon
    Pissuwan, Dakrong
    Katewongsa, Kanlaya Prapainop
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 5383 - 5395
  • [25] Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives
    Pandita, Deepti
    Kumar, Sandeep
    Lather, Viney
    DRUG DISCOVERY TODAY, 2015, 20 (01) : 95 - 104
  • [26] Poly(lactic-co-glycolic acid) encapsulated platinum nanoparticles for cancer treatment
    Ruiz, Aida Lopez
    Arribas, Evaristo Villaseco
    McEnnis, Kathleen
    MATERIALS ADVANCES, 2022, 3 (06): : 2858 - 2870
  • [27] Comparative Receptor Based Brain Delivery of Tramadol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles
    Lalani, Jigar
    Raichandani, Yogesh
    Mathur, Rashi
    Lalan, Manisha
    Chutani, Krishna
    Mishra, Anil Kumar
    Misra, Ambikanandan
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2012, 8 (06) : 918 - 927
  • [28] Modified Poly(lactic-co-glycolic Acid) Nanoparticles for Enhanced Cellular Uptake and Gene Editing in the Lung
    Fields, Rachel J.
    Quijano, Elias
    McNeer, Nicole Ali
    Caputo, Christina
    Bahal, Raman
    Anandalingam, Kavi
    Egan, Marie E.
    Glazer, Peter M.
    Saltzman, W. Mark
    ADVANCED HEALTHCARE MATERIALS, 2015, 4 (03) : 361 - 366
  • [29] Poly lactic-co-glycolic acid-based nanoparticles as delivery systems for enhanced cancer immunotherapy
    Gao, Lei
    Li, Jing
    Song, Tianhang
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [30] Poly(lactic-co-glycolic acid) as a particulate emulsifier
    Whitby, Catherine P.
    Lim, Li Hui
    Eskandar, Nasrin Ghouchi
    Simovic, Spomenka
    Prestidge, Clive A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 375 : 142 - 147