Thermodynamic and exergoeconomic analyses of a vehicular fuel cell power system with waste heat recovery for cabin heating and reactants preheating

被引:24
|
作者
Li, Longquan [1 ,4 ]
Liu, Zhiqiang [1 ]
Deng, Chengwei [2 ]
Xie, Nan [1 ]
Ren, Jingzheng [3 ]
Sun, Yi [2 ]
Xiao, Zhenyu [1 ]
Lei, Kun [1 ]
Yang, Sheng [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
[2] Shanghai Inst Space Power Sources, Space Power Technol State Key Lab, Shanghai 200245, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China
[4] Univ Groningen, Energy & Sustainabil Res Inst Groningen ESIRG, Integrated Res Energy Environm & Soc IREES, NL-9747 AG Groningen, Netherlands
关键词
Fuel cell; Waste heat recovery; Reactants preheating; Cabin heating; Thermodynamic; Exergoeconomic analyses; EXERGY ANALYSIS; PEMFC SYSTEM; MANAGEMENT; ENERGY; OPTIMIZATION; CYCLE;
D O I
10.1016/j.energy.2022.123465
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, a novel vehicular proton exchange membrane fuel cell power system with waste heat recovery for multiple thermal applications is proposed. The waste heat is utilized for cabin heating and reactants preheating. Thermodynamic model of the proposed system is established and validated. The proposed system is evaluated from the viewpoints of thermodynamic and exergoeconomic. The results show that the possible amount of heat supplied to the cabin varies from 933 W to 23971 W by adjustment of operating parameters. Energy consumption and exergy destruction of each component are presented, and components should receive more priority in further researches are pointed out. The effects of the operation parameters on system energy efficiency, exergy efficiency and total cost per unit of product exergy are presented and analyzed by parametric studies. It is found that system exergy efficiency first increases and then decrease as stack operation temperature is increased. Single-objective and multi-objective optimizations for better thermodynamic and economic performance of the system are conducted. By optimizing the operation parameters, the system exergy efficiency could be increased to 45.77%, and total cost per unit of product exergy could be decreased to 29.42 US$/GJ. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery
    Xu, Jingyuan
    Luo, Ercang
    Hochgreb, Simone
    ENERGY, 2021, 227
  • [32] Thermodynamic analysis of an LNG fuelled combined cycle power plant with waste heat recovery and utilization system
    Shi, Xiaojun
    Che, Defu
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (10) : 975 - 998
  • [33] Optimal configuration for combined cooling, heating, and power system with waste heat recovery of domestic hot water
    Zhang, Liang
    Sun, Bo
    Gong, Xiao
    Zhang, Lizhi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5220 - 5225
  • [34] Exergetic and exergoeconomic evaluation of a solid-oxide fuel-cell-based combined heat and power generation system
    Lee, Young Duk
    Ahn, Kook Young
    Morosuk, Tatiana
    Tsatsaronis, George
    ENERGY CONVERSION AND MANAGEMENT, 2014, 85 : 154 - 164
  • [35] Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle
    Mahmoudi, S. M. Seyed
    Sarabchi, Niloufar
    Yari, Mortaza
    Rosen, Marc A.
    SUSTAINABILITY, 2019, 11 (12):
  • [36] Thermodynamic analysis and optimization of a hybrid power system using thermoradiative device to efficiently recover waste heat from alkaline fuel cell
    Zhang, Xin
    Rahman, Ehsanur
    RENEWABLE ENERGY, 2022, 200 : 1240 - 1250
  • [37] Thermodynamic and exergic modelling of a combined cooling, heating and power system based on solid oxide fuel cell
    Pirkandi, J.
    Joharchi, A. M.
    Ommian, M.
    JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2019, 13 (04) : 6088 - 6111
  • [38] Thermodynamic and exergoeconomic analyses of a proton exchange membrane fuel cell (PEMFC) system and the feasibility evaluation of integrating with a proton exchange membrane electrolyzer (PEME)
    Chitsaz, Ata
    Haghghi, Maghsoud Abdollahi
    Hosseinpour, Javad
    ENERGY CONVERSION AND MANAGEMENT, 2019, 186 : 487 - 499
  • [39] Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle
    Lan, Song
    Li, Qingshan
    Guo, Xin
    Wang, Shukun
    Chen, Rui
    ENERGY, 2023, 263
  • [40] A new biomass-natural gas dual fuel hybrid cooling and power process integrated with waste heat recovery process: Exergoenvironmental and exergoeconomic assessments
    Bai, Li
    Asadollahzadeh, Muhammad
    Chauhan, Bhupendra Singh
    Abdrabboh, Mostafa
    Fayed, Mohamed
    Ayed, Hamdi
    Mouldi, Abir
    Marefati, Mohammad
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 867 - 888