Synchrotron-based investigation of iron precipitation in multicrystalline silicon

被引:11
|
作者
Seifert, W. [1 ,2 ]
Vyvenko, O. [2 ,3 ]
Arguirov, T. [1 ,2 ]
Kittler, M. [1 ,2 ]
Salome, M. [4 ]
Seibt, M. [5 ]
Trushin, M. [2 ]
机构
[1] IHP Microelect, D-15236 Frankfurt, Oder, Germany
[2] IHP BTU Joint Lab, D-03046 Cottbus, Germany
[3] St Petersburg State Univ, VA Fok Inst Phys, St Petersburg 108594, Russia
[4] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[5] Univ Gottingen, Inst Phys 4, D-37077 Gottingen, Germany
关键词
Silicon; Defects; Metal precipitates; Recombination; Synchrotron X-ray microprobe techniques; SOLAR-CELLS; CZOCHRALSKI SILICON; DIFFUSION LENGTH; METAL-CLUSTERS;
D O I
10.1016/j.spmi.2008.11.025
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report on investigations of the precipitation of iron in block-cast multicrystalline silicon using the techniques of X-ray beam induced current, X-ray fluorescence microscopy and X-ray absorption microspectroscopy. The samples studied were intentionally contaminated with iron and annealed at temperatures between 850 and 1050 degrees C. Annealing at 950 degrees C was found to lead to well detectable iron precipitation inside the grains and at grain boundaries. Small only iron clusters were detected after the 850 degrees C anneal while no iron clusters were found after the 1050 degrees C treatment. X-ray absorption near edge structure analyses of the iron clusters revealed mostly iron silicide and in one case iron oxide. Under the given condition at the beamline, the detection sensitivity for iron was estimated to be 4 x 10(7) atoms, corresponding to a spherical FeSi(2) particle of 40 nm radius. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:168 / 176
页数:9
相关论文
共 50 条
  • [31] Synchrotron-based spectroscopic characterization of functionalized, freestanding, and oxide-embedded silicon nanocrystals
    Kelly, Joel A.
    Henderson, Eric J.
    Hessel, Colin M.
    Cavell, Ronald G.
    Veinot, Jonathan G. C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [32] Determination of ferrous-ferric iron contents in tourmaline using synchrotron-based XANES
    Levy, Elizabeth A.
    Henry, Darrell J.
    Roy, Amitava
    Dutrow, Barbara L.
    JOURNAL OF GEOSCIENCES, 2018, 63 (02) : 167 - 174
  • [33] Characterization of iron oxide-based pigments by synchrotron-based micro X-ray diffraction
    Herrera, L. K.
    Cotte, M.
    Jimenez de Haro, M. C.
    Duran, A.
    Justo, A.
    Perez-Rodriguez, J. L.
    APPLIED CLAY SCIENCE, 2008, 42 (1-2) : 57 - 62
  • [34] Actinide speciation using synchrotron-based methods
    Melissa A. Denecke
    Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 : 1339 - 1343
  • [35] Oxygen and carbon precipitation in continuous cooling in cast multicrystalline silicon
    Zhou, L. (Lzhou@ncu.edu.cn), 1600, Science Press (33):
  • [36] Actinide speciation using synchrotron-based methods
    Denecke, Melissa A.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2015, 303 (02) : 1339 - 1343
  • [37] Synchrotron-based structural proteomics of vesicle transport
    Wakatsuki, Soichi
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2007, 24 (06): : 717 - 718
  • [38] Synchrotron-based spectroscopy for solar energy conversion
    Himpsel, F. J.
    Cook, P. L.
    Zegkinoglou, I.
    Boukahil, Idris
    Qiao, R.
    Yang, W.
    Pemmaraju, S. C.
    Prendergast, D.
    Kronawitter, C. X.
    Kibria, M. G.
    Mi, Zetian
    Vayssieres, L.
    SOLAR HYDROGEN AND NANOTECHNOLOGY X, 2015, 9560
  • [39] Treatment planning for a synchrotron-based radiotherapy modality
    Manolopoulos, S.
    Wojnecki, C.
    Green, S.
    Hugtenburg, R. P.
    Jones, B.
    APPLIED RADIATION AND ISOTOPES, 2009, 67 (03) : 492 - 494
  • [40] Progress of Synchrotron-Based Research on Atmospheric Science
    Kong, Xiangrui
    Dou, Jing
    Chen, Shuzhen
    Wang, Bingbing
    Wu, Zhijun
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 963 - 972