The common invariant subspace problem: an approach via Grobner bases

被引:13
|
作者
Arapura, D
Peterson, C [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
eigenvector; invariant subspace; Grassmann variety; Grobner basis; algorithm;
D O I
10.1016/j.laa.2003.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n matrix. It is a relatively simple process to construct a homogeneous ideal (generated by quadrics) whose associated projective variety parametrizes the one-dimensional invariant subspaces of A. Given a finite collection of n x n matrices, one can similarly construct a homogeneous ideal (again generated by quadrics) whose associated projective variety parametrizes the one-dimensional subspaces which are invariant subspaces for every member of the collection. Grobner basis techniques then provide a finite, rational algorithm to determine how many points are on this variety. In other words, a finite, rational algorithm is given to determine both the existence and quantity of common one-dimensional invariant subspaces to a set of matrices. This is then extended, for each d, to an algorithm to determine both the existence and quantity of common d-dimensional invariant subspaces to a set of matrices. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] GROBNER BASES AND INVARIANT-THEORY
    STURMFELS, B
    WHITE, N
    ADVANCES IN MATHEMATICS, 1989, 76 (02) : 245 - 259
  • [2] ON THE JACOBIAN CONJECTURE - A NEW APPROACH VIA GROBNER BASES
    ABHYANKAR, SS
    LI, W
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 61 (03) : 211 - 222
  • [3] THE COMMON INVARIANT SUBSPACE PROBLEM AND TARSKI'S THEOREM
    Pastuszak, Grzegorz
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 343 - 356
  • [4] Grobner bases, invariant theory and equivariant dynamics
    Gatermann, K
    Guyard, F
    JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (1-2) : 275 - 302
  • [5] Grobner bases of ideals invariant under endomorphisms
    Drensky, Vesselin
    La Scala, Roberto
    JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (07) : 835 - 846
  • [6] Grobner bases via linkage
    Gorla, E.
    Migiore, J. C.
    Nagel, U.
    JOURNAL OF ALGEBRA, 2013, 384 : 110 - 134
  • [7] A GROBNER APPROACH TO INVOLUTIVE BASES
    APEL, J
    JOURNAL OF SYMBOLIC COMPUTATION, 1995, 19 (05) : 441 - 457
  • [8] On the Invariant Subspace Problem
    Sababheh, M.
    Yousef, A.
    Khalil, R.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 699 - 705
  • [9] On the Invariant Subspace Problem
    M. Sababheh
    A. Yousef
    R. Khalil
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 699 - 705
  • [10] Castelnuovo theory via Grobner bases
    Petrakiev, Ivan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 619 : 49 - 73