Fractional reaction-diffusion

被引:268
|
作者
Henry, BI [1 ]
Wearne, SL [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1016/S0378-4371(99)00469-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a fractional reaction-diffusion equation from a continuous-time random walk model with temporal memory and sources. The equation provides a general model for reaction-diffusion phenomena with anomalous diffusion such as occurs in spatially inhomogeneous environments. As a first investigation of this equation ae consider the special case of single species fractional reaction-diffusion in one dimension and show that the fractional diffusion does not by itself precipitate a Turing instability. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 50 条
  • [11] A local theory for a fractional reaction-diffusion equation
    Viana, Arlucio
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (06)
  • [12] Solutions of the Reaction-Diffusion Brusselator with Fractional Derivatives
    Anber, Ahmed
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2014, 17 (5-6) : 451 - 460
  • [13] Bifurcation Characteristics of Fractional Reaction-Diffusion Systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    Luchko, Yuri
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 290 - 297
  • [14] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [15] Solution of Generalized Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 (3)
  • [16] GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM
    Chen, Peng
    Cao, Zhijie
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 556 - 567
  • [17] Pattern formation in a fractional reaction-diffusion system
    Gafiychuk, V. V.
    Datsko, B. Yo.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 300 - 306
  • [18] Dynamics of a Stochastic Fractional Reaction-Diffusion Equation
    Liu, Linfang
    Fu, Xianlong
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 95 - 124
  • [19] Dynamics of Fractional Delayed Reaction-Diffusion Equations
    Liu, Linfang
    Nieto, Juan J.
    ENTROPY, 2023, 25 (06)
  • [20] A Liouville theorem for a class of reaction-diffusion systems with fractional diffusion
    Guo, Jong-Shenq
    Shimojo, Masahiko
    APPLIED MATHEMATICS LETTERS, 2022, 133