Craniofacial Reconstruction Using Gaussian Process Latent Variable Models

被引:4
|
作者
Xiao, Zedong [1 ]
Zhao, Junli [1 ,2 ]
Qiao, Xuejun [3 ]
Duan, Fuqing [1 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[2] Qingdao Univ, Coll Software & Technol, Qingdao 266071, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
关键词
GP-LVM; LSSVM; Craniofacial reconstruction; FACE RECONSTRUCTION; SKULL;
D O I
10.1007/978-3-319-23192-1_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Craniofacial reconstruction aims at estimating the facial outlook associated to a skull. It can be applied in victim identification, forensic medicine and archaeology. In this paper, we propose a craniofacial reconstruction method using Gaussian Process Latent Variable Models (GP-LVM). GP-LVM is used to represent the skull and face skin data in a low dimensional latent space respectively. The mapping from the skull to face skin is built in the latent spaces by using least square support vector machine (LSSVM) regression model. Experimental results show that the GP-LVM latent space improves the representation of craniofacial data and boosts the reconstruction results compared with the methods in literature.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [21] Brain Shape Correspondence Analysis Using Variational Mixtures for Gaussian Process Latent Variable Models
    Minoli, Juan P., V
    Orozco, Alvaro A.
    Porras-Hurtado, Gloria L.
    Garcia, Hernan F.
    ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 547 - 556
  • [22] Shaking Hands in Latent Space Modeling Emotional Interactions with Gaussian Process Latent Variable Models
    Taubert, Nick
    Endres, Dominik
    Christensen, Andrea
    Giese, Martin A.
    KI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7006 : 330 - +
  • [23] Learning GP-BayesFilters via Gaussian process latent variable models
    Ko, Jonathan
    Fox, Dieter
    AUTONOMOUS ROBOTS, 2011, 30 (01) : 3 - 23
  • [24] Learning GP-BayesFilters via Gaussian process latent variable models
    Jonathan Ko
    Dieter Fox
    Autonomous Robots, 2011, 30 : 3 - 23
  • [25] Generation of Stochastic Interconnect Responses via Gaussian Process Latent Variable Models
    De Ridder, Simon
    Deschrijver, Dirk
    Manfredi, Paolo
    Dhaene, Tom
    Vande Ginste, Dries
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (02) : 582 - 585
  • [26] Shared Gaussian Process Latent Variable Models for Handling Ambiguous Facial Expressions
    Ek, Carl Henrik
    Jaeckel, Peter
    Campbell, Neill
    Lawrence, Neil D.
    Melhuish, Chris
    INTELLIGENT SYSTEMS AND AUTOMATION, 2009, 1107 : 147 - +
  • [27] Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
    Gal, Yarin
    van der Wilk, Mark
    Rasmussen, Carl E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [28] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [29] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    Machine Learning, 2021, 110 : 1105 - 1143
  • [30] Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models
    Mallasto, Anton
    Hauberg, Soren
    Feragen, Aasa
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89