Enhanced Oil Recovery from Austin Chalk Carbonate Reservoirs Using Faujasite-Based Nanoparticles Combined with Low-Salinity Water Flooding

被引:21
|
作者
Taleb, Moussa [1 ]
Sagala, Farad [1 ]
Hethnawi, Afif [1 ]
Nassar, Nashaat N. [1 ]
机构
[1] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
WETTABILITY ALTERATION; HEAVY-OIL; SURFACE; INJECTION; IMPACT; ADSORPTION; NANOFLUIDS; MIGRATION; EOR;
D O I
10.1021/acs.energyfuels.0c02324
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recently, the application of nanoparticles for enhancing oil recovery (EOR) in carbonate reservoirs has received great attention from various researchers across the oil and gas industry. In contrast to sandstone reservoirs, carbonates are naturally neutral wet or preferentially oil wet and, therefore, the recovery of oil from these reservoirs by waterflooding techniques is relatively low and inefficient. Hence, the addition of chemical agents can modify rock wettability and increase the efficiency of the waterflooding process. The role of nanoparticles and their implementations in the field of oil recovery has been highlighted by many researchers in the past, due to their attractive features and characteristics. However, choosing the appropriate nanoparticles is not the only limiting factor to guarantee better performance in EOR but also depends on their stability and dispersion under aqueous conditions. Accordingly, many metal oxides or silicate-based nanomaterials have been subjected to surface modifications, following some complex and costly ineffective functionalization steps before their application. In this study, novel and stable nanomaterials of faujasite were synthesized at mild conditions without following any surface modification steps to alter the wettability of Austin Chalk carbonate rocks from oil wet to strongly water wet in the presence of low-salinity water (LSW). The synthesized nanoparticles were well characterized by scanning electron microscopy (SEM), transfer electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential to confirm their surface identity, functionality, morphology, and stability. The prepared nanofluids from the synthesized nanoparticles were tested in comparison to brine for their EOR efficiency in carbonate cores. The EOR performance was investigated by interfacial tension (IFT), contact angle, spontaneous imbibition, and displacement tests. The results showed that, compared to formation brine and LSW, the formulated nanofluid could notably alter the rock wettability from strong oil wet to strong water wet. To confirm this, a core-flooding test was performed, which further reiterated the capability of these nanofluids as effective EOR agents in hydrocarbon carbonate reservoirs by recovering an additional 9.6% of OOIP. Consequently, on the basis of the obtained findings, these faujasite-based nanofluids provide a prospect of being applied in EOR in carbonate formations.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 50 条
  • [21] Coupling of Low-Salinity Water Flooding and Steam Flooding for Sandstone Unconventional Oil Reservoirs
    Al-Saedi, Hasan N.
    Flori, Ralph E.
    Alkhamis, Mohammed
    Brady, Patrick V.
    NATURAL RESOURCES RESEARCH, 2019, 28 (01) : 213 - 221
  • [22] Coupling of Low-Salinity Water Flooding and Steam Flooding for Sandstone Unconventional Oil Reservoirs
    Hasan N. Al-Saedi
    Ralph E. Flori
    Mohammed Alkhamis
    Patrick V. Brady
    Natural Resources Research, 2019, 28 : 213 - 221
  • [23] Foam flooding in porous media for low-salinity enhanced oil recovery
    Tantihet, Kanyarat
    Charoensaeng, Ampira
    Shiau, Bor
    Suriyapraphadilok, Uthaiporn
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [24] Modelling Low-Salinity Water Flooding as a Tertiary Oil Recovery Technique
    Olabode, Oluwasanmi
    Alaigba, David
    Oramabo, Daniel
    Bamigboye, Oreofeoluwa
    MODELLING AND SIMULATION IN ENGINEERING, 2020, 2020
  • [25] Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies
    Dordzie, Gideon
    Dejam, Morteza
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2021, 293
  • [26] Enhanced Oil Recovery (EOR) by Combined Low Salinity Water/Polymer Flooding
    Shiran, Behruz Shaker
    Skauge, Arne
    ENERGY & FUELS, 2013, 27 (03) : 1223 - 1235
  • [27] A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs
    Olayiwola, Saheed Olawale
    Dejam, Morteza
    FUEL, 2019, 241 : 1045 - 1057
  • [28] Experimental investigation of low salinity water-flooding in tight chalk oil reservoirs
    Mokhtari, Rasoul
    Anabaraonye, Benaiah U.
    Afrough, Armin
    Mohammadkhani, Samira
    Feilberg, Karen L.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [29] Experimental investigation on fluid/fluid and rock/fluid interactions in enhanced oil recovery by low salinity water flooding for carbonate reservoirs
    Saw, Rohit Kumar
    Mandal, Ajay
    FUEL, 2023, 352
  • [30] Gradual or Instantaneous Wettability Alteration During Simulation of Low-Salinity Water Flooding in Carbonate Reservoirs
    Negahdari, Zahra
    Malayeri, Mohammad R.
    Ghaedi, Mojtaba
    Khandoozi, Sabber
    Riazi, Masoud
    NATURAL RESOURCES RESEARCH, 2021, 30 (01) : 495 - 517