Enhanced Oil Recovery from Austin Chalk Carbonate Reservoirs Using Faujasite-Based Nanoparticles Combined with Low-Salinity Water Flooding

被引:21
|
作者
Taleb, Moussa [1 ]
Sagala, Farad [1 ]
Hethnawi, Afif [1 ]
Nassar, Nashaat N. [1 ]
机构
[1] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
WETTABILITY ALTERATION; HEAVY-OIL; SURFACE; INJECTION; IMPACT; ADSORPTION; NANOFLUIDS; MIGRATION; EOR;
D O I
10.1021/acs.energyfuels.0c02324
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recently, the application of nanoparticles for enhancing oil recovery (EOR) in carbonate reservoirs has received great attention from various researchers across the oil and gas industry. In contrast to sandstone reservoirs, carbonates are naturally neutral wet or preferentially oil wet and, therefore, the recovery of oil from these reservoirs by waterflooding techniques is relatively low and inefficient. Hence, the addition of chemical agents can modify rock wettability and increase the efficiency of the waterflooding process. The role of nanoparticles and their implementations in the field of oil recovery has been highlighted by many researchers in the past, due to their attractive features and characteristics. However, choosing the appropriate nanoparticles is not the only limiting factor to guarantee better performance in EOR but also depends on their stability and dispersion under aqueous conditions. Accordingly, many metal oxides or silicate-based nanomaterials have been subjected to surface modifications, following some complex and costly ineffective functionalization steps before their application. In this study, novel and stable nanomaterials of faujasite were synthesized at mild conditions without following any surface modification steps to alter the wettability of Austin Chalk carbonate rocks from oil wet to strongly water wet in the presence of low-salinity water (LSW). The synthesized nanoparticles were well characterized by scanning electron microscopy (SEM), transfer electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential to confirm their surface identity, functionality, morphology, and stability. The prepared nanofluids from the synthesized nanoparticles were tested in comparison to brine for their EOR efficiency in carbonate cores. The EOR performance was investigated by interfacial tension (IFT), contact angle, spontaneous imbibition, and displacement tests. The results showed that, compared to formation brine and LSW, the formulated nanofluid could notably alter the rock wettability from strong oil wet to strong water wet. To confirm this, a core-flooding test was performed, which further reiterated the capability of these nanofluids as effective EOR agents in hydrocarbon carbonate reservoirs by recovering an additional 9.6% of OOIP. Consequently, on the basis of the obtained findings, these faujasite-based nanofluids provide a prospect of being applied in EOR in carbonate formations.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 50 条
  • [1] Oil recovery by low-salinity polymer flooding in carbonate oil reservoirs
    Lee, Yeonkyeong
    Lee, Wonsuk
    Jang, Youngho
    Sung, Wonmo
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 181
  • [2] Integrating Silicate-Based Nanoparticles with Low-Salinity Water Flooding for Enhanced Oil Recovery in Sandstone Reservoirs
    Sagala, Farad
    Hethnawi, Afif
    Nassar, Nashaat N.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (37) : 16225 - 16239
  • [3] Numerical modeling and experimental investigation on the effect of low-salinity water flooding for enhanced oil recovery in carbonate reservoirs
    Erfan Hosseini
    Mohammad Sarmadivaleh
    Dana Mohammadnazar
    Journal of Petroleum Exploration and Production, 2021, 11 : 925 - 947
  • [4] Numerical modeling and experimental investigation on the effect of low-salinity water flooding for enhanced oil recovery in carbonate reservoirs
    Hosseini, Erfan
    Sarmadivaleh, Mohammad
    Mohammadnazar, Dana
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2021, 11 (02) : 925 - 947
  • [5] Conditions for a Low-Salinity Enhanced Oil Recovery (EOR) Effect in Carbonate Oil Reservoirs
    Austad, T.
    Shariatpanahi, S. F.
    Strand, S.
    Black, C. J. J.
    Webb, K. J.
    ENERGY & FUELS, 2012, 26 (01) : 569 - 575
  • [6] Effect of Electrokinetics and Thermodynamic Equilibrium on Low-Salinity Water Flooding for Enhanced Oil Recovery in Sandstone Reservoirs
    Elakneswaran, Yogarajah
    Ubaidah, Amir
    Takeya, Miku
    Shimokawara, Mai
    Okano, Hirofumi
    ACS OMEGA, 2021, 6 (05): : 3727 - 3735
  • [7] Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs
    Hyemin Park
    Yongjun Park
    Yeonkyeong Lee
    Wonmo Sung
    Petroleum Science, 2018, (04) : 772 - 782
  • [8] Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs
    Hyemin Park
    Yongjun Park
    Yeonkyeong Lee
    Wonmo Sung
    Petroleum Science, 2018, 15 (04) : 772 - 782
  • [9] Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs
    Park, Hyemin
    Park, Yongjun
    Lee, Yeonkyeong
    Sung, Wonmo
    PETROLEUM SCIENCE, 2018, 15 (04) : 772 - 782
  • [10] Enhanced oil recovery efficiency of low-salinity water flooding in oil reservoirs including Fe2+ ions
    Lee, Yeonkyeong
    Park, Hyemin
    Lee, Jeonghwan
    Sung, Wonmo
    ENERGY EXPLORATION & EXPLOITATION, 2019, 37 (01) : 355 - 374