High-Throughput Kinetic Analysis for Target-Directed Covalent Ligand Discovery

被引:48
|
作者
Craven, Gregory B. [1 ,2 ]
Affron, Dominic P. [1 ]
Allen, Charlotte E. [1 ]
Matthies, Stefan [1 ]
Greener, Joe G. [2 ]
Morgan, Rhodri M. L. [2 ]
Tate, Edward W. [1 ]
Armstrong, Alan [1 ]
Mann, David J. [2 ]
机构
[1] Imperial Coll London, Dept Chem, South Kensington Campus, London SW7 2AZ, England
[2] Imperial Coll London, Dept Life Sci, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Cdk2; covalent inhibition; fragment-based drug discovery; kinetics; protein modification; DRUG DISCOVERY; IRREVERSIBLE INHIBITORS; BINDING FRAGMENTS; PROTEIN-KINASES; CANCER-THERAPY; ASSAY; BIOLOGY; DESIGN; THIOLS; PROBES;
D O I
10.1002/anie.201711825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cysteine-reactive small molecules are used as chemical probes of biological systems and as medicines. Identifying high-quality covalent ligands requires comprehensive kinetic analysis to distinguish selective binders from pan-reactive compounds. Quantitative irreversible tethering (qIT), a general method for screening cysteine-reactive small molecules based upon the maximization of kinetic selectivity, is described. This method was applied prospectively to discover covalent fragments that target the clinically important cell cycle regulator Cdk2. Crystal structures of the inhibitor complexes validate the approach and guide further optimization. The power of this technique is highlighted by the identification of a Cdk2-selective allosteric (type IV) kinase inhibitor whose novel mode-of-action could be exploited therapeutically.
引用
收藏
页码:5257 / 5261
页数:5
相关论文
共 50 条
  • [21] Target-directed in vitro and in vivo testing procedures for the discovery of anticancer agents.
    Fiebig, HH
    Burger, AM
    CLINICAL CANCER RESEARCH, 1999, 5 : 3870S - 3870S
  • [22] Nuclear receptor target gene discovery using high-throughput chromatin immunoprecipitation
    Laganière, J
    Deblois, G
    Giguère, V
    NUCELAR RECEPTORS, 2003, 364 : 339 - 350
  • [23] From drug to protein: using yeast genetics for high-throughput target discovery
    Armour, CD
    Lum, PY
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (01) : 20 - 24
  • [24] High-Throughput Routes to Biomaterials Discovery
    Soheilmoghaddam, Farhad
    Rumble, Madeleine
    Cooper-White, Justin
    CHEMICAL REVIEWS, 2021, 121 (18) : 10792 - 10864
  • [25] High-throughput gene discovery in the rat
    Scheetz, TE
    Laffin, JJ
    Berger, B
    Holte, S
    Baumes, SA
    Brown, R
    Chang, S
    Coco, J
    Conklin, J
    Crouch, K
    Donohue, M
    Doonan, G
    Estes, C
    Eyestone, M
    Fishler, K
    Gardiner, J
    Guo, L
    Johnson, B
    Keppel, C
    Kreger, R
    Lebeck, M
    Marcelino, R
    Miljkovich, M
    Perdue, M
    Qui, L
    Rehmann, J
    Reiter, RS
    Rhoads, B
    Schaefer, K
    Smith, C
    Sunjevaric, I
    Trout, K
    Wu, N
    Birkett, CL
    Bischof, J
    Gackle, B
    Gavin, A
    Grundstad, AJ
    Mokrzycki, B
    Moressi, C
    Oleary, B
    Pedretti, K
    Roberts, C
    Robinson, NL
    Smith, M
    Tack, D
    Trivedi, N
    Kucaba, T
    Freeman, T
    Lin, JJC
    GENOME RESEARCH, 2004, 14 (04) : 733 - 741
  • [26] High-throughput strategies for the discovery of catalysts
    Shimizu, KD
    Snapper, ML
    Hoveyda, AH
    CHEMISTRY-A EUROPEAN JOURNAL, 1998, 4 (10) : 1885 - 1889
  • [27] High-throughput kinetics in drug discovery
    Pinto, Maria Filipa
    Sirina, Julija
    Holliday, Nicholas D.
    Mcwhirter, Claire L.
    SLAS DISCOVERY, 2024, 29 (05)
  • [28] High-Throughput Screening for Biomarker Discovery
    Janvilisri, Tavan
    Suzuki, Haruo
    Scaria, Joy
    Chen, Jenn-Wei
    Charoensawan, Varodom
    DISEASE MARKERS, 2015, 2015
  • [30] High-throughput screening for drug discovery
    Broach, JR
    Thorner, J
    NATURE, 1996, 384 (6604) : 14 - 16