Interconnected CoS2/NC-CNTs network as high-performance anode materials for lithium-ion batteries

被引:51
|
作者
Kong, Lingjun [1 ]
Liu, Yingying [1 ]
Huang, Hui [1 ]
Liu, Ming [1 ]
Xu, Wei [1 ]
Li, Baiyan [1 ]
Bu, Xian-He [1 ,2 ]
机构
[1] Nankai Univ, TKL Met & Mol Based Mat Chem, Natl Inst Adv Mat, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
metal-organic frameworks; CoS2; carbon nanotubes; anode; lithium-ion batteries; METAL-ORGANIC FRAMEWORK; STORAGE CAPABILITY; CARBON NANOTUBES; ENERGY-STORAGE; COMPOSITE; TEMPLATE; SULFIDES;
D O I
10.1007/s40843-020-1477-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cobalt disulfide (CoS2) has been considered a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity of 870 mA h g(-1). However, its practical applications have been hampered by undesirable cycle life and rate performance due to the volume change and deterioration of electronic conductivity during the discharge-charge process. In this study, an interconnected CoS2/N-doped carbon/carbon nanotube (CoS2/NC-CNTs-700) network was successfully prepared to boost its lithium storage performance, in which small-size CoS2 nanoparticles were confined by N-doped carbon and uniformly decorated on the surface of CNTs. N-doped carbon can effectively accommodate the large volume expansion of CoS2 nanoparticles. Additionally, the 3D conductive nanostructure design offers adequate electrical/mass transport spacing. Benefiting from this, the CoS2/NC-CNTs-700 electrode demonstrates a long cycle life (a residual capacity of 719 mA h g(-1) after 100 cycles at 0.2 A g(-1)) and outstanding rate performance (335 mA h g(-1) at 5.0 A g(-1)). This study broadens the design and application of CoS2 and fosters the advances in battery anode research.
引用
收藏
页码:820 / 829
页数:10
相关论文
共 50 条
  • [21] CuSn(OH)6 Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries
    Zhou, Zhaofu
    Chen, Tian
    Deng, Jianqiu
    Yao, Qingrong
    Wang, Zhongmin
    Zhou, Huaiying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (02): : 2001 - 2009
  • [22] Theoretical prediction of borophene monolayer as anode materials for high-performance lithium-ion batteries
    Liu, Jianhua
    Zhang, Libo
    Xu, Lei
    IONICS, 2018, 24 (06) : 1603 - 1615
  • [23] Theoretical prediction of borophene monolayer as anode materials for high-performance lithium-ion batteries
    Jianhua Liu
    Libo Zhang
    Lei Xu
    Ionics, 2018, 24 : 1603 - 1615
  • [24] SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries
    Yu, Jingxue
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    Yang, D. (mseyang@zju.edu.cn), 1600, Elsevier Ltd (577): : 564 - 568
  • [25] Amorphous CoMoS4 Nanoparticles Attached to CNTs@PDA as High-Performance Anode Materials for Lithium-Ion Batteries
    Cai, JiangTao
    Ding, Yunyun
    Zhu, Youyu
    Hou, Liuhua
    Zhao, Shiyong
    Zhang, Yating
    ENERGY & FUELS, 2022, 36 (07) : 3964 - 3975
  • [26] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Yuan-Xiang Fu
    Xian-Yinan Pei
    Dong-Chuan Mo
    Shu-Shen Lyu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5092 - 5097
  • [27] 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries
    Zhang, Yaohui
    Wang, Nana
    Sun, Changhui
    Lu, Zhenxiao
    Xue, Pan
    Tang, Bin
    Bai, Zhongchao
    Dou, Shixue
    Chemical Engineering Journal, 2019, 332 : 370 - 376
  • [28] 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries
    Zhang, Yaohui
    Wang, Nana
    Sun, Changhui
    Lu, Zhenxiao
    Xue, Pan
    Tang, Bin
    Bai, Zhongchao
    Dou, Shixue
    CHEMICAL ENGINEERING JOURNAL, 2018, 332 : 370 - 376
  • [29] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Haoliang Xue
    Qingze Jiao
    Jinyu Du
    Shanshan Wang
    Caihong Feng
    Qin Wu
    Hansheng Li
    Qinliang Lu
    Daxin Shi
    Yun Zhao
    Ionics, 2019, 25 : 4659 - 4666
  • [30] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Jiao, Qingze
    Du, Jinyu
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Lu, Qinliang
    Shi, Daxin
    Zhao, Yun
    IONICS, 2019, 25 (10) : 4659 - 4666