Automatic Kellgren-Lawrence grade estimation driven deep learning algorithms

被引:0
|
作者
Li, Nianyi [1 ]
Swiecicki, Albert [2 ]
Said, Nicholas [1 ]
O'Donnell, Jonathan [3 ]
Jiranek, William A. [4 ]
Mazurowski, Maciej A. [1 ,2 ]
机构
[1] Duke Univ, Dept Radiol, Durham, NC 27710 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[3] Duke Univ, Sch Med, Durham, NC USA
[4] Duke Univ, Dept Orthopaed Surg, Durham, NC USA
关键词
deep learning; osteoarthritis; Kellgren-Lawrence; knee radiographs; Multicenter Osteoarthritis Study; OSTEOARTHRITIS;
D O I
10.1117/12.2551392
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Knee osteoarthritis (OA) is a prevalent and disabling degenerative joint disease. Objectively identifying knee OA severity is challenging given significant inter-reader variability due to human interpretation factors. The Kellgren-Lawrence (KL) grading system is a commonly used scale to quantitatively characterize the severity of knee OA in knee radiographs. It is important to reliably identify severe knee OA since total knee arthroplasty (TKA) can provide significant improvement in patient quality of life for patients with severe knee OA. In this study, we demonstrate a deep learning approach to automatically assessing KL grades. Our approach uses faster R-CNN object detection network to identify the knee region and deep convolutional neural network for classification. We used a dataset of 7962 knee radiographs for each posteroanterior (PA) and lateral (LAT) views, to develop and evaluate our approach. Images with their corresponding KL grades were obtained from the Multicenter Osteoarthritis Study (MOST) dataset. Our network showed multi-class classification accuracy of 69.15 % when the assessment was made based on PA views and accuracy of 56.68 % when LAT views were used. The developed network may play a significant role in surgical decision-making regarding knee replacement surgery.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Automatic wound detection and size estimation using deep learning algorithms
    Carrion, Hector
    Jafari, Mohammad
    Bagood, Michelle Dawn
    Yang, Hsin-ya
    Isseroff, Roslyn Rivkah
    Gomez, Marcella
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (03)
  • [32] Severity of joint pain and Kellgren-Lawrence grade at baseline are better predictors of joint space narrowing than bone scintigraphy in obese women with knee osteoarthritis
    Mazzuca, SA
    Brandt, KD
    Schauwecker, DS
    Katz, BP
    Meyer, JM
    Lane, KA
    Bradley, JD
    Hugenberg, ST
    Wolfe, F
    Moreland, LW
    Heck, LW
    Yocum, DE
    Schnitzer, TJ
    Sharma, L
    Manzi, S
    Oddis, CV
    JOURNAL OF RHEUMATOLOGY, 2005, 32 (08) : 1540 - 1546
  • [33] OPEN WEDGEHIGH TIBIAL OSTEOTOMY (OWHTO) CONTRIBUTESPOST-OPERATIVEGOOD CLINICAL RESULTS FOR PATIENTS WITH KNEE OSTEOARTHRITIS UP TO GRADE 3 OF KELLGREN-LAWRENCE CLASSIFICATION
    Kubota, M.
    Kaneko, H.
    Kim, Y.
    Yoshida, K.
    Kobayashi, K.
    Tomura, J.
    Wakana, S.
    Shiozawa, J.
    Hada, S.
    Saita, Y.
    Ishijima, M.
    OSTEOARTHRITIS AND CARTILAGE, 2023, 31 : S197 - S197
  • [34] Progression of the MRI-Detected Osteoarthritis Features in Radiographic 'End-Stage' Knee Osteoarthritis (Kellgren-Lawrence grade 4) - the Multicenter Osteoarthritis Study
    Guermazi, Ali
    Hayashi, Daichi
    Roemer, Frank
    Felson, David T.
    Wang, Ke
    Lynch, John
    Amin, Shreyasee
    Torner, James
    Lewis, C. E.
    Nevitt, Michael C.
    ARTHRITIS AND RHEUMATISM, 2011, 63 (10): : S376 - S377
  • [35] MEDIAL MENISCUS EXTRUSION WAS ASSOCIATED WITH THE CLINICAL MANIFESTATION OF THE ELDERLIES AGED 70'S WITHOUT KNEE PAIN WITH KELLGREN-LAWRENCE GRADE 2 OF KNEE OSTEOARTHRITIS
    Aoki, T.
    Liu, L.
    Ishijima, M.
    Someya, Y.
    Kaneko, H.
    Sadatsuki, R.
    Hada, S.
    Yusup, A.
    Kinoshita, M.
    Arita, H.
    Shiozawa, J.
    Tamura, Y.
    Nagao, M.
    Takazawa, Y.
    Ikeda, H.
    Watada, H.
    Kawamori, R.
    Kaneko, K.
    OSTEOARTHRITIS AND CARTILAGE, 2017, 25 : S366 - S367
  • [36] WHAT HAPPENS TO KELLGREN-LAWRENCE GRADE 1 JOINTS IN HAND OSTEOARTHRITIS (OA) AFTER 2.6 YEARS? "OA OR NOT OA THAT IS THE QUESTION ?" - DATA FROM THE SEKOIA TRIAL
    Maheu, E.
    Cadet, C.
    Carrat, F.
    Barthe, Y.
    Berenbaum, F.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 : S270 - S270
  • [37] MEDIAL MENISCUS EXTRUSION IS A RISK FACTOR FOR PROGRESSION OF KNEE STIFFNESS IN MIDDLE-AGED POPULATIONS WITH KELLGREN-LAWRENCE GRADE 0-THE OSTEOARTHRITIS INITIATIVE
    Yamamura, T.
    Kaneko, H.
    Adili, A.
    Liu, L.
    Aoki, T.
    Tomura, J.
    Wakana, S.
    Machiyama, Y.
    Tamura, Y.
    Kubota, M.
    Ishijima, M.
    OSTEOARTHRITIS AND CARTILAGE, 2023, 31 : S172 - S173
  • [38] WHAT HAPPENS TO KELLGREN-LAWRENCE GRADE 1 JOINTS IN HAND OA AFTER 2.6 YEARS ? OA OR NOT OA "THAT IS THE QUESTION" ? - DATA FROM THE SEKOIA TRIAL
    Maheu, E.
    Cadet, C.
    Carrat, F.
    Barthe, Y.
    Berenbaum, F.
    ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 : 694 - 694
  • [39] CORRELATION BETWEEN THE PREOPERATIVE KELLGREN-LAWRENCE GRADE AND THE CLINICAL OUTCOME OF MID-TERM TO LONG-TERM FOLLOW-UP IN HIGH TIBIAL OSTEOTOMY
    Kuwashima, U.
    Iwasaki, K.
    Itoh, M.
    Itou, J.
    Kawamura, H.
    Nakashima, Y.
    Okazaki, K.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S466 - S467
  • [40] Automatic estimation of knee joint space narrowing by deep learning segmentation algorithms
    Swiecicki, Albert
    Said, Nicholas
    O'Donnell, Jonathan
    Buda, Mateusz
    Li, Nianyi
    Jiranek, William A.
    Mazurowski, Maciej A.
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314