Automatic Kellgren-Lawrence grade estimation driven deep learning algorithms

被引:0
|
作者
Li, Nianyi [1 ]
Swiecicki, Albert [2 ]
Said, Nicholas [1 ]
O'Donnell, Jonathan [3 ]
Jiranek, William A. [4 ]
Mazurowski, Maciej A. [1 ,2 ]
机构
[1] Duke Univ, Dept Radiol, Durham, NC 27710 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[3] Duke Univ, Sch Med, Durham, NC USA
[4] Duke Univ, Dept Orthopaed Surg, Durham, NC USA
关键词
deep learning; osteoarthritis; Kellgren-Lawrence; knee radiographs; Multicenter Osteoarthritis Study; OSTEOARTHRITIS;
D O I
10.1117/12.2551392
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Knee osteoarthritis (OA) is a prevalent and disabling degenerative joint disease. Objectively identifying knee OA severity is challenging given significant inter-reader variability due to human interpretation factors. The Kellgren-Lawrence (KL) grading system is a commonly used scale to quantitatively characterize the severity of knee OA in knee radiographs. It is important to reliably identify severe knee OA since total knee arthroplasty (TKA) can provide significant improvement in patient quality of life for patients with severe knee OA. In this study, we demonstrate a deep learning approach to automatically assessing KL grades. Our approach uses faster R-CNN object detection network to identify the knee region and deep convolutional neural network for classification. We used a dataset of 7962 knee radiographs for each posteroanterior (PA) and lateral (LAT) views, to develop and evaluate our approach. Images with their corresponding KL grades were obtained from the Multicenter Osteoarthritis Study (MOST) dataset. Our network showed multi-class classification accuracy of 69.15 % when the assessment was made based on PA views and accuracy of 56.68 % when LAT views were used. The developed network may play a significant role in surgical decision-making regarding knee replacement surgery.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Kellgren-Lawrence grade of osteoarthritis is associated with change in certain morphological parameters
    Misir, Abdulhamit
    Yildiz, Kadir Ilker
    Kizkapan, Turan Bilge
    Incesoy, Mustafa Alper
    KNEE, 2020, 27 (03): : 633 - 641
  • [2] STUDY OF CARTILAGE DAMAGE INDEX WITH JOINT SPACE NARROWING AND KELLGREN-LAWRENCE GRADE
    Zhang, M.
    Driban, J. B.
    Price, L.
    Harper, D.
    Lo, G. H.
    Miller, E.
    Ward, R. J.
    McAlindon, T. E.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 : S297 - S298
  • [3] DEEPKNEE: TOWARDS OPEN SOURCE FULLY-AUTOMATIC KELLGREN-LAWRENCE GRADING
    Tiulpin, A.
    Panfilov, E.
    Vaattovaara, E.
    Niinimaki, J.
    Nevalainen, M.
    Saarakkala, S.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 : S25 - S25
  • [4] Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population
    Simon Olsson
    Ehsan Akbarian
    Anna Lind
    Ali Sharif Razavian
    Max Gordon
    BMC Musculoskeletal Disorders, 22
  • [5] GAIT DEFICIT ASSESSMENT IN PATIENTS WITH KELLGREN-LAWRENCE GRADE I I HIP OSTEOARTHRITIS
    Stoicanescu, D. L.
    Cseppento, C. Nistor
    Cevei, I-R
    Cevei, M. L.
    OSTEOPOROSIS INTERNATIONAL, 2017, 28 : S501 - S502
  • [6] Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population
    Olsson, Simon
    Akbarian, Ehsan
    Lind, Anna
    Razavian, Ali Sharif
    Gordon, Max
    BMC MUSCULOSKELETAL DISORDERS, 2021, 22 (01)
  • [7] Characterization of cartilage defects detected by MRI in Kellgren-Lawrence grade 0 or 1 knees
    Taguchi, Kenji
    Chiba, Ko
    Okazaki, Narihiro
    Kido, Yasuo
    Miyamoto, Takashi
    Yonekura, Akihiko
    Tomita, Masato
    Uetani, Masataka
    Osaki, Makoto
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2017, 22 (05) : 868 - 873
  • [8] QUANTITATIVE ANALYSIS OF THE JOINT SPACE NARROWING SPEED IN EACH KELLGREN-LAWRENCE GRADE OF KNEE OSTEOARTHRITIS
    Miyazaki, T.
    Sakamoto, T.
    Watanabe, Y.
    Nakajima, H.
    Oki, H.
    Matsumine, A.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S398 - S399
  • [9] ULTRASONOGRAPHIC FEATURES OF KNEE TISSUES IN PATIENTS WITH OSTEOARTHRITIS BY KELLGREN-LAWRENCE GRADE 0-IV
    Velmurugan, A.
    Korochina, K.
    Chernysheva, T.
    Korochina, I.
    Krivotulova, I.
    OSTEOARTHRITIS AND CARTILAGE, 2022, 30 : S291 - S291
  • [10] Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers
    Vaattovaara, Elias
    Panfilov, Egor
    Tiulpin, Aleksei
    Niinimaki, Tuukka
    Niinimaki, Jaakko
    Saarakkala, Simo
    Nevalainen, Mika T.
    OSTEOARTHRITIS AND CARTILAGE OPEN, 2025, 7 (02):