Surface energy budget at Curiosity through observations and column modeling

被引:5
|
作者
Savijarvi, H., I [1 ,2 ]
Martinez, G. M. [3 ,4 ]
Vicente-Retortillo, A. [3 ,5 ]
Harri, A-M [2 ]
机构
[1] Univ Helsinki, Inst Atmospher & Earth Syst Res Phys, Helsinki, Finland
[2] Finnish Meteorol Inst, Helsinki, Finland
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Space Res Assoc, Lunar & Planetary Inst, Houston, TX USA
[5] Ctr Astrobiol INTA CSIC, Madrid, Spain
基金
芬兰科学院;
关键词
Mars; Climate; Surface; Meteorology; GALE CRATER; BOUNDARY-LAYER; WATER CYCLE; MARS; DUST; REMS;
D O I
10.1016/j.icarus.2022.114900
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Diurnal ground surface temperatures (T-g) and the five major terms of the surface energy budget (SEB) are dis-played from hourly Mars Science Laboratory observations and from column model simulations in four contrasting cases along the Curiosity traverse. T(g )and the SEB terms are otherwise well simulated on regolith near the landing spot and on rocky Pahrump Hills, but the residual in observation-based SEB (-downwelling longwave radiation) shows unexplained peaks in the morning and evening and simultaneously model-T(g )is too cold. Enhanced or diurnally variable crater dust does not help but diurnally variable soil thermal inertia (suggested by Fourier analysis of observed T-g) reduces both defects at both sites. Sand on the steep Namib dune is instead homogeneous, defects here being reduced by taking into account slope effects. Regolith at the 2018 dust storm site appears inhomogeneous, with the SEB terms and T(g )relatively well simulated even in this case of extremely heavy dust load.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling
    Verkhoglyadova, Olga
    Meng, Xing
    Mannucci, Anthony J.
    Tsurutani, Bruce T.
    Hunt, Linda A.
    Mlynczak, Martin G.
    Hajra, Rajkumar
    Emery, Barbara A.
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2016, 6
  • [42] Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget
    Tjernstrom, Michael
    Shupe, Matthew D.
    Brooks, Ian M.
    Achtert, Peggy
    Prytherch, John
    Sedlar, Joseph
    JOURNAL OF CLIMATE, 2019, 32 (03) : 769 - 789
  • [43] Estimation of the advection effects induced by surface heterogeneities in the surface energy budget
    Cuxart, Joan
    Wrenger, Burkhard
    Martinez-Villagrasa, Daniel
    Reuder, Joachim
    Jonassen, Marius O.
    Jimenez, Maria A.
    Lothon, Marie
    Lohou, Fabienne
    Hartogensis, Oscar
    Duennermann, Jens
    Conangla, Laura
    Garai, Anirban
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (14) : 9489 - 9504
  • [44] Energy budget for a rock avalanche: fate of fracture-surface energy
    Davies, Tim R. H.
    Reznichenko, Natalya V.
    McSaveney, Mauri J.
    LANDSLIDES, 2020, 17 (01) : 3 - 13
  • [45] Energy budget for a rock avalanche: fate of fracture-surface energy
    Tim R. H. Davies
    Natalya V. Reznichenko
    Mauri J. McSaveney
    Landslides, 2020, 17 : 3 - 13
  • [46] Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland
    van As, Dirk
    JOURNAL OF GLACIOLOGY, 2011, 57 (202) : 208 - 220
  • [47] The Surface Energy Budget of a Wheat Crop: Estimates of Storage
    Garratt, J. R.
    BOUNDARY-LAYER METEOROLOGY, 2023, 189 (1-3) : 235 - 250
  • [48] On the Kinetic Energy Budget of the Unstable Atmospheric Surface Layer
    K. G. Mcnaughton
    Boundary-Layer Meteorology, 2006, 118 : 83 - 107
  • [49] The Influence of Changes in Vegetation Type on the Surface Energy Budget
    Runhua Yang
    J. Shukla
    Advances in Atmospheric Sciences, 1994, (02) : 139 - 161
  • [50] The Surface Energy Budget of a Wheat Crop: Estimates of Storage
    J. R. Garratt
    Boundary-Layer Meteorology, 2023, 189 : 235 - 250