Multigrid methods for improving the variational data assimilation in numerical weather prediction

被引:1
|
作者
Kang, Youn-Hee [1 ]
Kwak, Do Young [1 ]
Park, Kyungjeen [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[2] Korea Meteorol Adm, Numer Model Dev Div, Seoul, South Korea
关键词
numerical weather prediction; variational data assimilation; minimization procedure; multigrid methods; cell centered finite difference;
D O I
10.3402/tellusa.v66.20217
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Two conditions are needed to solve numerical weather prediction models: initial condition and boundary condition. The initial condition has an especially important bearing on the model performance. To get a good initial condition, many data assimilation techniques have been developed for the meteorological and the oceanographical fields. Currently, the most commonly used technique for operational applications is the 3 dimensional (3-D) or 4 dimensional variational data assimilation method. The numerical method used for the cost function minimising process is usually an iterative method such as the conjugate gradient. In this paper, we use the multigrid method based on the cell-centred finite difference on the variational data assimilation to improve the performance of the minimisation procedure for 3D-Var data assimilation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A NEW APPROACH TO DATA ASSIMILATION FOR NUMERICAL WEATHER FORECASTING AND CLIMATE PREDICTION
    Duan, Wansuo
    Feng, Rong
    Yang, Lichao
    Jiang, Lin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (03): : 1007 - 1021
  • [22] Integral correction of initial and model errors in system of multigrid NLS-4DVar data assimilation for numerical weather prediction (SNAP)
    Zhang, Hongqin
    Tian, Xiangjun
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (746) : 2490 - 2506
  • [23] On four-dimensional variational assimilation of ozone data in weather-prediction models
    Riishojgaard, LP
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1996, 122 (535) : 1545 - 1571
  • [24] Variational Assimilation of Radio Occultation Observations into Numerical Weather Prediction Models: Equations, Strategies, and Algorithms
    Gorbunov, Michael
    Stefanescu, Razvan
    Irisov, Vladimir
    Zupanski, Dusanka
    REMOTE SENSING, 2019, 11 (24)
  • [25] On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models
    Li Jun
    Wang Pei
    Han Hyojin
    Li Jinlong
    Zheng Jing
    JOURNAL OF METEOROLOGICAL RESEARCH, 2016, 30 (02) : 169 - 182
  • [26] On the Assimilation of Satellite Sounder Data in Cloudy Skies in Numerical Weather Prediction Models
    李俊
    王培
    HAN Hyojin
    李金龙
    郑婧
    JournalofMeteorologicalResearch, 2016, 30 (02) : 169 - 182
  • [27] Recent developments in the data assimilation of AROME/HU numerical weather prediction model
    Toth, Helga
    Homonnai, Viktoria
    Mile, Mate
    Varkonyi, Aniko
    Kocsis, Zsofia
    Szanyi, Kristof
    Toth, Gabriella
    Szintai, Balazs
    Szepszo, Gabriella
    IDOJARAS, 2021, 125 (04): : 521 - 553
  • [28] Overview of global data assimilation developments in numerical weather-prediction centres
    Rabier, Florence
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3215 - 3233
  • [29] On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models
    Jun Li
    Pei Wang
    Hyojin Han
    Jinlong Li
    Jing Zheng
    Journal of Meteorological Research, 2016, 30 : 169 - 182
  • [30] Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation
    Rogberg, P.
    Read, P. L.
    Lewis, S. R.
    Montabone, L.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) : 1614 - 1635