Gust load alleviation of an unmanned aerial vehicle wing using variable camber

被引:14
|
作者
Bernhammer, Lars O. [1 ]
Teeuwen, Sjors P. W. [1 ]
De Breuker, Roeland [1 ]
van der Veen, Gijs J. [2 ]
van Solingen, Edwin [2 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands
[2] Delft Univ Technol, Fac Mech Engn, Delft Ctr Syst & Control, NL-2629 HS Delft, Netherlands
关键词
FLIGHT CONTROL; ACTUATORS; PROJECT; MODEL;
D O I
10.1177/1045389X13511010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is vital for an unmanned aerial vehicle to meet contradictory mission requirements originating from different tasks this type of aircraft has to fulfill. The ability to switch between configurations greatly expands the range of possible missions. An unmanned aerial vehicle wing has been developed to demonstrate the capacity to optimize the aerodynamic and structural performances according to the mission stage. The wing is equipped with four macro fiber composite benders that can be controlled individually, and each of these macro fiber composite benders actuates a section of the wing. A numerical study was conducted with XFLR5 to determine the optimal configurations of the flap positions for both range and endurance. A wind tunnel study was performed to verify these results. During the experiment, a maximum attainable increase in lift coefficient of 0.072 could be achieved, while numerically the increase was computed to be 0.079. The wide-frequency bandwidth of the actuators allows using the developed system also for other purposes such as load alleviation. Unmanned aerial vehicles are often light and fly at low airspeeds, which make them very sensitive to gust excitation. For this purpose, the experimental model was equipped with two accelerometers to measure the amplitude of the first two deformation modes. Significant load alleviation capacities with reductions up to 50% in load amplitude could be achieved. This reduction was achieved, even though the wing box contributes largely to the structural damping, as the foam for the construction absorbs a significant proportion of the vibrations. © The Author(s) 2013.
引用
收藏
页码:795 / 805
页数:11
相关论文
共 50 条
  • [31] On Maneuverability of Fixed-Wing Unmanned Aerial Vehicle Formations
    Challa, Vinay Reddy
    Ratnoo, Ashwini
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (07) : 1327 - 1344
  • [32] Autonomous flight performance maximization for slung load carrying rotary wing mini unmanned aerial vehicle
    Uzun, Metin
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2024, 96 (04): : 593 - 603
  • [33] SIMULTANEOUS STRUCTURE CONTROL DESIGN OPTIMIZATION OF A WING STRUCTURE WITH A GUST LOAD ALLEVIATION SYSTEM
    SUZUKI, S
    YONEZAWA, S
    JOURNAL OF AIRCRAFT, 1993, 30 (02): : 268 - 274
  • [34] DEVELOPMENT OF AN AEROELASTIC WING MODEL WITH PIEZOELECTRIC ELEMENTS FOR GUST LOAD ALLEVIATION AND ENERGY HARVESTING
    Bruni, Claudia
    Cestino, Enrico
    Frulla, Giacomo
    Marzocca, Pier
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 1, 2015,
  • [35] Free-wing unmanned aerial vehicle as a microgravity facility
    Kraeger, AM
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (03) : 579 - 587
  • [37] Constrained Imitation Learning for a Flapping Wing Unmanned Aerial Vehicle
    Tejaswi, K. C.
    Lee, Taeyoung
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04): : 10534 - 10541
  • [38] Prediction of static stability in tandem wing unmanned aerial vehicle
    Sugandi, T. S.
    Nathan
    Subrata, S. K.
    Arifianto, O.
    Moelyadi, M. A.
    6TH INTERNATIONAL SEMINAR OF AEROSPACE SCIENCE AND TECHNOLOGY (ISAST), 2018, 1130
  • [39] Fire Monitoring with a Fixed-wing Unmanned Aerial Vehicle
    El Tin, Fares
    Sharf, Inna
    Nahon, Meyer
    2022 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2022, : 1350 - 1358
  • [40] Design of folded wing mechanism for Unmanned Aerial Vehicle (UAV)
    Devi, P. Anjani
    Priyadarsini, Ch. Indira
    Avvari, Chandu
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4117 - 4125