A Nonparametric Multiple Imputation Approach for Data with Missing Covariate Values with Application to Colorectal Adenoma Data

被引:12
|
作者
Hsu, Chiu-Hsieh [1 ,2 ]
Long, Qi [3 ]
Li, Yisheng [4 ]
Jacobs, Elizabeth [1 ,2 ]
机构
[1] Univ Arizona, Div Epidemiol & Biostat, Coll Publ Hlth, Tucson, AZ 85724 USA
[2] Univ Arizona, Arizona Canc Ctr, Coll Med, Tucson, AZ 85724 USA
[3] Emory Univ, Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
Missing at random; Multiple imputation; Nearest neighbor; Nonparametric imputation; LIKELIHOOD; REGRESSION; TRIAL;
D O I
10.1080/10543406.2014.888444
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A nearest neighbor-based multiple imputation approach is proposed to recover missing covariate information using the predictive covariates while estimating the association between the outcome and the covariates. To conduct the imputation, two working models are fitted to define an imputing set. This approach is expected to be robust to the underlying distribution of the data. We show in simulation and demonstrate on a colorectal data set that the proposed approach can improve efficiency and reduce bias in a situation with missing at random compared to the complete case analysis and the modified inverse probability weighted method.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
  • [31] Imputation of continuous missing values in profile data
    Yang, Luo
    Wang, Kaibo
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) : 3644 - 3662
  • [32] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [33] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592
  • [34] Multiple imputation for nonignorable missing data
    Jongho Im
    Soeun Kim
    Journal of the Korean Statistical Society, 2017, 46 : 583 - 592
  • [35] Multiple imputation of missing data for survey data analysis
    Lupo, Coralie
    Le Bouquin, Sophie
    Michel, Virginie
    Colin, Pierre
    Chauvin, Claire
    EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53): : 73 - 83
  • [36] Multiple Imputation for Missing Values in Homicide Incident Data: An Evaluation Using Unique Test Data
    Roberts, John M., Jr.
    Roberts, Aki
    Wadsworth, Tim
    HOMICIDE STUDIES, 2018, 22 (04) : 391 - 409
  • [37] Simultaneous confidence bands for nonparametric regression with missing covariate data
    Li Cai
    Lijie Gu
    Qihua Wang
    Suojin Wang
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 1249 - 1279
  • [38] Simultaneous confidence bands for nonparametric regression with missing covariate data
    Cai, Li
    Gu, Lijie
    Wang, Qihua
    Wang, Suojin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (06) : 1249 - 1279
  • [39] A stochastic multiple imputation algorithm for missing covariate data in tree-structured survival analysis
    Wallace, Meredith L.
    Anderson, Stewart J.
    Mazumdar, Sati
    STATISTICS IN MEDICINE, 2010, 29 (29) : 3004 - 3016
  • [40] The performance of multiple imputation for missing covariate data within the context of regression relative survival analysis
    Giorgi, Roch
    Belot, Aurelien
    Gaudart, Jean
    Launoy, Guy
    STATISTICS IN MEDICINE, 2008, 27 (30) : 6310 - 6331