A Nonparametric Multiple Imputation Approach for Data with Missing Covariate Values with Application to Colorectal Adenoma Data

被引:12
|
作者
Hsu, Chiu-Hsieh [1 ,2 ]
Long, Qi [3 ]
Li, Yisheng [4 ]
Jacobs, Elizabeth [1 ,2 ]
机构
[1] Univ Arizona, Div Epidemiol & Biostat, Coll Publ Hlth, Tucson, AZ 85724 USA
[2] Univ Arizona, Arizona Canc Ctr, Coll Med, Tucson, AZ 85724 USA
[3] Emory Univ, Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
Missing at random; Multiple imputation; Nearest neighbor; Nonparametric imputation; LIKELIHOOD; REGRESSION; TRIAL;
D O I
10.1080/10543406.2014.888444
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A nearest neighbor-based multiple imputation approach is proposed to recover missing covariate information using the predictive covariates while estimating the association between the outcome and the covariates. To conduct the imputation, two working models are fitted to define an imputing set. This approach is expected to be robust to the underlying distribution of the data. We show in simulation and demonstrate on a colorectal data set that the proposed approach can improve efficiency and reduce bias in a situation with missing at random compared to the complete case analysis and the modified inverse probability weighted method.
引用
收藏
页码:634 / 648
页数:15
相关论文
共 50 条
  • [1] A nonparametric multiple imputation approach for missing categorical data
    Zhou, Muhan
    He, Yulei
    Yu, Mandi
    Hsu, Chiu-Hsieh
    BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
  • [2] A nonparametric multiple imputation approach for missing categorical data
    Muhan Zhou
    Yulei He
    Mandi Yu
    Chiu-Hsieh Hsu
    BMC Medical Research Methodology, 17
  • [3] Proper Use of Multiple Imputation and Dealing with Missing Covariate Data
    Saffari, Seyed Ehsan
    Volovici, Victor
    Ong, Marcus Eng Hock
    Goldstein, Benjamin Alan
    Vaughan, Roger
    Dammers, Ruben
    Steyerberg, Ewout W.
    Liu, Nan
    WORLD NEUROSURGERY, 2022, 161 : 284 - 290
  • [4] A comparison of multiple imputation methods for the analysis of survival data with outcome related missing covariate values
    Silva, Jose Luiz P.
    SIGMAE, 2023, 12 (01): : 76 - 89
  • [5] MULTIPLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR THE TREATMENT OF MISSING DATA
    Chen, Sixia
    Haziza, David
    STATISTICA SINICA, 2019, 29 (04) : 2035 - 2053
  • [6] DOUBLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR IGNORABLE MISSING DATA
    Long, Qi
    Hsu, Chiu-Hsieh
    Li, Yisheng
    STATISTICA SINICA, 2012, 22 (01) : 149 - 172
  • [7] A Novel Nonparametric Multiple Imputation Algorithm for Estimating Missing Data
    Gheyas, Iffat A.
    Smith, Leslie S.
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1281 - 1286
  • [8] A First Approach on Big Data Missing Values Imputation
    Montesdeoca, Besay
    Luengo, Julian
    Maillo, Jesus
    Garcia-Gil, Diego
    Garcia, Salvador
    Herrera, Francisco
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS 2019), 2019, : 315 - 323
  • [9] Analysing Mark–Recapture–Recovery Data in the Presence of Missing Covariate Data Via Multiple Imputation
    Hannah Worthington
    Ruth King
    Stephen T. Buckland
    Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 28 - 46
  • [10] Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data
    Wu, Chong
    Demerath, Ellen W.
    Pankow, James S.
    Bressler, Jan
    Fornage, Myriam
    Grove, Megan L.
    Chen, Wei
    Guan, Weihua
    EPIGENETICS, 2016, 11 (02) : 132 - 139