Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data

被引:0
|
作者
Medhat, M. E. [1 ,2 ]
Shirmardi, S. P. [3 ]
Singh, V. P. [4 ]
机构
[1] Nucl Res Ctr, Expt Nucl Phys Dept, PO 13759, Cairo, Egypt
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] NSTRI, Radiat Applicat Res Sch, POB 14395-836, Tehran, Iran
[4] Karnatak Univ, Dept Phys, Dharwad 580003, Karnataka, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 03期
关键词
Attenuation coefficient; Monte Carlo N-particle-4C code; blood; HEMOGLOBIN;
D O I
10.1007/s12043-016-1344-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monte Carlo N-particle (MCNP) code has been used to simulate the transport of gamma photon rays of different energies (22, 31, 59.5 and 81 keV) to estimate the iron content in solutions. In this study, MCNP simulation results are compared with experiment and XCOM theoretical data. The simulation shows that the obtained results are in good agreement with experimental data, and better than the theoretical XCOM values. The study indicates that MCNP simulation is an excellent tool to estimate the iron concentration in the blood samples. The MCNP code can also be utilized to estimate other trace elements in the blood samples.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] MONTE-CARLO SIMULATION OF RBS SPECTRA - COMPARISON TO EXPERIMENTAL AND EMPIRICAL RESULTS
    STEINBAUER, E
    BAUER, P
    BIERSACK, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1990, 45 (1-4): : 171 - 175
  • [22] MONTE CARLO SIMULATION OF TURBULENT ATMOSPHERIC TRANSPORT AND COMPARISONS WITH EXPERIMENTAL DATA.
    Alsmiller, F.S.
    Alsmiller Jr., R.G.
    Bertini, H.W.
    Begovich, C.L.
    Journal of Applied Meteorology, 1979, 18 (01): : 17 - 26
  • [23] Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals
    Haque, Chowdhury Azimul
    Kwon, Tae-Ho
    Kim, Ki-Doo
    SENSORS, 2022, 22 (03)
  • [24] A comparison of proper orthogonal decomposition and Monte Carlo simulation of wind pressure data
    Rocha, MM
    Cabral, SVS
    Riera, JD
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2000, 84 (03) : 329 - 344
  • [25] Comparison of Quantum Corrections for Monte Carlo Simulation
    Winstead B.
    Tsuchiya H.
    Ravaioli U.
    Journal of Computational Electronics, 2002, 1 (1-2) : 201 - 207
  • [26] Comparison of Pseudorandom Number Generators and Their Application for Uncertainty Estimation Using Monte Carlo Simulation
    Karan Malik
    Jiji Pulikkotil
    Anjali Sharma
    MAPAN, 2021, 36 : 481 - 496
  • [27] A Comparison of Maximum Likelihood and Bayesian Estimation for Polychoric Correlation Using Monte Carlo Simulation
    Choi, Jaehwa
    Kim, Sunhee
    Chen, Jinsong
    Dannels, Sharon
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2011, 36 (04) : 523 - 549
  • [28] Comparison of Pseudorandom Number Generators and Their Application for Uncertainty Estimation Using Monte Carlo Simulation
    Malik, K.
    Pulikkotil, J.
    Sharma, A.
    MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 2021, 36 (03): : 481 - 496
  • [29] Monte Carlo calculation of backscattered light intensity by suspension: comparison with experimental data
    Universite de Provence, Marseille, France
    Appl Opt, 10 (1735-1741):
  • [30] Monte Carlo calculation of backscattered light intensity by suspension: Comparison with experimental data
    Bergougnoux, L
    MisguichRipault, J
    Firpo, JL
    Andre, J
    APPLIED OPTICS, 1996, 35 (10) : 1735 - 1741