Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data

被引:0
|
作者
Medhat, M. E. [1 ,2 ]
Shirmardi, S. P. [3 ]
Singh, V. P. [4 ]
机构
[1] Nucl Res Ctr, Expt Nucl Phys Dept, PO 13759, Cairo, Egypt
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] NSTRI, Radiat Applicat Res Sch, POB 14395-836, Tehran, Iran
[4] Karnatak Univ, Dept Phys, Dharwad 580003, Karnataka, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 03期
关键词
Attenuation coefficient; Monte Carlo N-particle-4C code; blood; HEMOGLOBIN;
D O I
10.1007/s12043-016-1344-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monte Carlo N-particle (MCNP) code has been used to simulate the transport of gamma photon rays of different energies (22, 31, 59.5 and 81 keV) to estimate the iron content in solutions. In this study, MCNP simulation results are compared with experiment and XCOM theoretical data. The simulation shows that the obtained results are in good agreement with experimental data, and better than the theoretical XCOM values. The study indicates that MCNP simulation is an excellent tool to estimate the iron concentration in the blood samples. The MCNP code can also be utilized to estimate other trace elements in the blood samples.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data
    M E MEDHAT
    S P SHIRMARDI
    V P SINGH
    Pramana, 2017, 88
  • [2] Modeling experimental data in a Monte Carlo simulation
    Rutledge, GC
    PHYSICAL REVIEW E, 2001, 63 (02):
  • [3] Comparison of experimental data to Monte Carlo simulation-Parameter estimation and goodness-of-fit testing with weighted events
    Bohm, G.
    Zech, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 691 : 171 - 177
  • [4] MONTE-CARLO SIMULATION OF TURBULENT ATMOSPHERIC TRANSPORT - COMPARISON WITH EXPERIMENTAL-DATA
    ALSMILLER, RG
    ALSMILLER, FS
    BERTINI, HW
    BEGOVICH, CL
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1977, 27 (NOV): : 117 - 119
  • [5] MONTE-CARLO SIMULATION OF COPOLYMERIZATION AND COMPOSITIONAL INHOMOGENEITY OF COPOLYMERS - COMPARISON TO EXPERIMENTAL-DATA
    MIRABELLA, FM
    POLYMER, 1977, 18 (07) : 705 - 711
  • [6] Agile estimation with Monte Carlo simulation
    Zang, Juanjuan
    AGILE PROCESSES IN SOFTWARE ENGINEERING AND EXTREME PROGRAMMING, PROCEEDINGS, 2008, 9 : 172 - 179
  • [7] Particle-in-cell Monte-Carlo simulation of capacitive RF discharges: Comparison with experimental data
    Kim, HC
    Manuilenko, O
    Lee, JK
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (4A): : 1957 - 1958
  • [8] ROBUST ESTIMATION METHODS FOR EXPONENTIAL DATA - A MONTE-CARLO COMPARISON
    WILLEMAIN, TR
    ALLAHVERDI, A
    DESAUTELS, P
    ELDREDGE, J
    GUR, O
    MILLER, M
    PANOS, G
    SRINIVASAN, A
    SURTIHADI, J
    TOPAL, E
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1992, 21 (04) : 1043 - 1075
  • [9] Monte Carlo simulation of Auger electron cascades versus experimental data
    Pomplun, Ekkehard
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2016, 2 (01):
  • [10] Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation
    Haque, Chowdhury Azimul
    Hossain, Shifat
    Kwon, Tae-Ho
    Kim, Ki-Doo
    SENSORS, 2021, 21 (14)