HPGA: A High-Performance Graph Analytics Framework on the GPU

被引:0
|
作者
Yang, Haoduo [1 ,2 ]
Su, Huayou [1 ,2 ]
Wen, Mei [1 ,2 ]
Zhang, Chunyuan [1 ,2 ]
机构
[1] Natl Univ Def Technol, Dept Comp, Changsha 410000, Hunan, Peoples R China
[2] Natl Univ Def Technol, Natl Key Lab Parallel & Distributed Proc, Changsha 410000, Hunan, Peoples R China
关键词
Graph Analytics; High-performance Computing; GPU;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, the rapidly growing use of graphs has sparked parallel graph analytics frameworks for leveraging the massive hardware resources, specifically graphics processing units (GPUs). However, the issues of the unpredictable control flows, memory divergence, and the complexity of programming have restricted high-level GPU graph libraries. In this work, we present HPGA, a high performance parallel graph analytics framework targeting the GPU. HPGA implements an abstraction which maps vertex programs to generalized sparse matrix operations on GPUs for delivering high performance. HPGA incorporates high-performance GPU computing primitives and optimization strategies with a high-level programming model. We evaluate the performance of HPGA for three graph primitives (BFS, SSSP, PageRank) with large-scale datasets. The experimental results show that HPGA matches or even exceeds the performance of MapGraph and nvGRAPH, two state-of-the-art GPU graph libraries.
引用
收藏
页码:488 / 492
页数:5
相关论文
共 50 条
  • [21] Grus: Toward Unified-memory-efficient High-performance Graph Processing on GPU
    Wang, Pengyu
    Wang, Jing
    Li, Chao
    Wang, Jianzong
    Zhu, Haojin
    Guo, Minyi
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2021, 18 (02)
  • [22] GPU Clusters for High-Performance Computing
    Kindratenko, Volodymyr V.
    Enos, Jeremy J.
    Shi, Guochun
    Showerman, Michael T.
    Arnold, Galen W.
    Stone, John E.
    Phillips, James C.
    Hwu, Wen-mei
    2009 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING AND WORKSHOPS, 2009, : 638 - +
  • [23] High-Performance Packet Classification on GPU
    Zhou, Shijie
    Singapura, Shreyas G.
    Prasanna, Viktor K.
    2014 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2014,
  • [24] High-Performance and Energy-Efficient Network-on-Chip Architectures for Graph Analytics
    Duraisamy, Karthi
    Lu, Hao
    Pande, Partha Pratim
    Kalyanaraman, Ananth
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2016, 15 (04)
  • [25] HPTA: High-Performance Text Analytics
    Vandierendonck, Hans
    Murphy, Karen
    Arif, Mahwish
    Nikolopoulos, Dimitrios S.
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 416 - 423
  • [26] High-Performance Computing for Data Analytics
    Perrin, Dimitri
    Bezbradica, Marija
    Crane, Martin
    Ruskin, Heather J.
    Duhamel, Christophe
    2012 IEEE/ACM 16TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT), 2012, : 234 - 242
  • [27] High-Performance Geospatial Analytics in HyPerSpace
    Pandey, Varun
    Kipf, Andreas
    Vorona, Dimitri
    Muehlbauer, Tobias
    Neumann, Thomas
    Kemper, Alfons
    SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, : 2145 - 2148
  • [28] SplitX: High-Performance Private Analytics
    Chen, Ruichuan
    Akkus, Istemi Ekin
    Francis, Paul
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2013, 43 (04) : 315 - 326
  • [29] High-Performance Truss Analytics in Arkouda
    Du, Zhihui
    Patchett, Joseph
    Rodriguez, Oliver Alvarado
    Li, Fuhuan
    Bader, David A.
    2022 IEEE 29TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS, HIPC, 2022, : 105 - 114
  • [30] LCC-Graph: A High-Performance Graph-Processing Framework with Low Communication Costs
    Cheng, Yongli
    Wang, Fang
    Jiang, Hong
    Hua, Yu
    Feng, Dan
    Wang, Xiuneng
    2016 IEEE/ACM 24TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2016,