Real-time Prediction of Styrene Production Volume based on Machine Learning Algorithms

被引:0
|
作者
Wu, Yikai [1 ]
Hou, Fang [1 ]
Cheng, Xiaopei [1 ]
机构
[1] Accenture, World Financial Ctr, 21-F West Tower,1,East 3rd Ring Middle Rd, Beijing 100020, Peoples R China
关键词
styrene monomer; high-dimensionality; real-time prediction;
D O I
10.1007/978-3-319-62701-4_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to wide application of styrene and complex process of modern dehydrogenation of ethylbenzene, traditional methods usually spend much more time on chemical examinations and tests for identification of the production volume. Generally, there are several hours or days of time lag for the information to be made available. In this article, the whole ethylene cracking plants are investigated. The generalized regression neural network model is designed to timely predict the styrene output after the high-dimensional reduction. The usefulness of the model will be demonstrated by specific cases. The appropriate data mining techniques and implementation details will also be depicted. Finally, the simulation results show that this model can monitor the styrene output per hour with high accuracy.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [21] Comparing Machine Learning and Deep Learning Methods for Real-Time Crash Prediction
    Theofilatos, Athanasios
    Chen, Cong
    Antoniou, Constantinos
    TRANSPORTATION RESEARCH RECORD, 2019, 2673 (08) : 169 - 178
  • [22] Real-time prediction of propulsion motor overheating using machine learning
    Hellton, K. H.
    Tveten, M.
    Stakkeland, M.
    Engebretsen, S.
    Haug, O.
    Aldrin, M.
    JOURNAL OF MARINE ENGINEERING AND TECHNOLOGY, 2022, 21 (06): : 334 - 342
  • [23] Real-Time Prediction of Joint Forces by Motion Capture and Machine Learning
    Giarmatzis, Georgios
    Zacharaki, Evangelia, I
    Moustakas, Konstantinos
    SENSORS, 2020, 20 (23) : 1 - 19
  • [24] Prediction and real-time compensation of qubit decoherence via machine learning
    Sandeep Mavadia
    Virginia Frey
    Jarrah Sastrawan
    Stephen Dona
    Michael J. Biercuk
    Nature Communications, 8
  • [25] Real-Time TCP Packet Loss Prediction Using Machine Learning
    Welzl, Michael
    Islam, Safiqul
    von Stephanides, Maximilian
    IEEE ACCESS, 2024, 12 : 159622 - 159634
  • [26] Prediction and real-time compensation of qubit decoherence via machine learning
    Mavadia, Sandeep
    Frey, Virginia
    Sastrawan, Jarrah
    Dona, Stephen
    Biercuk, Michael J.
    NATURE COMMUNICATIONS, 2017, 8
  • [27] Real-time pavement temperature prediction through ensemble machine learning
    Kebede, Yared Bitew
    Yang, Ming-Der
    Huang, Chien-Wei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [28] Real-time tool condition monitoring with the internet of things and machine learning algorithms
    Mohanraj, T.
    Bharath, R. Sai
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2024,
  • [29] Application of Machine Learning Algorithms in Real-Time Monitoring of Conveyor Belt Damage
    Bzinkowski, Damian
    Rucki, Miroslaw
    Chalko, Leszek
    Kilikevicius, Arturas
    Matijosius, Jonas
    Cepova, Lenka
    Ryba, Tomasz
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [30] Machine Learning Algorithms for DoS and DDoS Cyberattacks Detection in Real-time Environment
    Berei, Ethan
    Khan, M. Ajmal
    Oun, Ahmed
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 1048 - 1049