Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

被引:177
|
作者
Gillis, Nicolas [1 ]
Vavasis, Stephen A. [2 ]
机构
[1] Univ Mons, Dept Math & Operat Res, Fac Polytech, B-7000 Mons, Hainaut, Belgium
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nonnegative matrix factorization; algorithms; separability; robustness; hyperspectral unmixing; linear mixing model; pure-pixel assumption; SPARSE; MODEL;
D O I
10.1109/TPAMI.2013.226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the nonnegative matrix factorization problem under the separability assumption ( that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We present a family of fast recursive algorithms and prove they are robust under any small perturbations of the input data matrix. This family generalizes several existing hyperspectral unmixing algorithms and hence provides for the first time a theoretical justification of their better practical performance.
引用
收藏
页码:698 / 714
页数:17
相关论文
共 50 条
  • [31] On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    Lin, Chih-Jen
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (06): : 1589 - 1596
  • [32] Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery
    Yang G.
    Sun W.
    Zhang D.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 737 - 744
  • [33] Robust graph regularized nonnegative matrix factorization for clustering
    Huang, Shudong
    Wang, Hongjun
    Li, Tao
    Li, Tianrui
    Xu, Zenglin
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (02) : 483 - 503
  • [34] CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR ROBUST HYPERSPECTRAL UNMIXING
    Feng, Fan
    Deng, Chenwei
    Wang, Wenzheng
    Dai, Jiahui
    Li, Zhenzhen
    Zhao, Baojun
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4221 - 4224
  • [35] Robust Structured Nonnegative Matrix Factorization for Image Representation
    Li, Zechao
    Tang, Jinhui
    He, Xiaofei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1947 - 1960
  • [36] NONNEGATIVE MATRIX FACTORIZATION USING A ROBUST ERROR FUNCTION
    Ding, Chris
    Kong, Deguang
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2033 - 2036
  • [37] Robust watermarking based on DWT and nonnegative matrix factorization
    Lu, Wei
    Sun, Wei
    Lu, Hongtao
    COMPUTERS & ELECTRICAL ENGINEERING, 2009, 35 (01) : 183 - 188
  • [38] Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Liu, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6076 - 6090
  • [39] Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization
    Fevotte, Cedric
    Dobigeon, Nicolas
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 4810 - 4819
  • [40] Robust Graph Regularized Nonnegative Matrix Factorization for Clustering
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)