Continued fraction algorithm for Sturmian colorings of trees

被引:0
|
作者
Kim, Dong Han [1 ]
Lim, Seonhee [2 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Kwanak Ro 1, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
COMPLEXITY;
D O I
10.1017/etds.2017.127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Factor complexity b(n) (phi) for a vertex coloring phi of a regular tree is the number of classes of n-balls up to color-preserving automorphisms. Sturmian colorings are colorings of minimal unbounded factor complexity b(n) (phi) = n + 2. In this article, we prove an induction algorithm for Sturmian colorings using colored balls in a way analogous to the continued fraction algorithm for Sturmian words. Furthermore, we characterize Sturmian colorings in terms of the data appearing in the induction algorithm.
引用
收藏
页码:2541 / 2569
页数:29
相关论文
共 50 条