AUTOMATIC TEXT SUMMARIZATION USING SUPPORT VECTOR MACHINE

被引:0
|
作者
Begum, Nadira [1 ]
Fattah, Mohamed Abdel [1 ,2 ]
Ren, Fuji [1 ,3 ]
机构
[1] Univ Tokushima, Fac Engn, Tokushima 7708506, Japan
[2] Helwan Univ, FIE, Cairo, Egypt
[3] Beijing Univ Posts & Telecommun, Sch Informat Engn, Beijing 100088, Peoples R China
基金
日本学术振兴会;
关键词
Automatic summarization; Support vector machine; Text features; SENTENCE COMPRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work investigates different text features to select the best one and proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train Support Vector Machine (SVM) in order to construct a text summarizer model. The proposed approach performance is measured at several compression rates (CR) on a data corpus composed of 100 English articles from the domain of politics.
引用
收藏
页码:1987 / 1996
页数:10
相关论文
共 50 条
  • [21] Automatic detection of voltage notches using support vector machine
    Qi R.
    Zyabkina O.
    Martinez D.A.
    Meyer J.
    Renewable Energy and Power Quality Journal, 2021, 19 : 528 - 533
  • [22] Automatic targret recognition using new support vector machine
    Casasent, D
    Wang, YC
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 84 - 89
  • [23] Automatic Arabic Text Summarization Using Analogical Proportions
    Bilel Elayeb
    Amina Chouigui
    Myriam Bounhas
    Oussama Ben Khiroun
    Cognitive Computation, 2020, 12 : 1043 - 1069
  • [24] Extractive Text Summarization using Word Vector Embedding
    Jain, Aditya
    Bhatia, Divij
    Thakur, Manish K.
    2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA SCIENCE (MLDS 2017), 2017, : 51 - 55
  • [25] Improving the Performance of Text Categorization using Automatic Summarization
    Jiang Xiao-Yu
    Fan Xiao-Zhong
    Wang Zhi-Fei
    Jia Ke-Liang
    2009 INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION, PROCEEDINGS, 2009, : 347 - +
  • [26] Automatic text summarization using latent semantic analysis
    I. V. Mashechkin
    M. I. Petrovskiy
    D. S. Popov
    D. V. Tsarev
    Programming and Computer Software, 2011, 37 : 299 - 305
  • [27] Automatic Text Summarization Using Latent Semantic Analysis
    Mashechkin, I. V.
    Petrovskiy, M. I.
    Popov, D. S.
    Tsarev, D. V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2011, 37 (06) : 299 - 305
  • [28] Automatic Arabic Text Summarization Using Analogical Proportions
    Elayeb, Bilel
    Chouigui, Amina
    Bounhas, Myriam
    Ben Khiroun, Oussama
    COGNITIVE COMPUTATION, 2020, 12 (05) : 1043 - 1069
  • [29] Automatic Text Summarization Using Internal and External Information
    Sarkar, Kamal
    PROCEEDINGS OF 2018 FIFTH INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2018,
  • [30] Automatic Text Summarization for Indonesian Language Using TextTeaser
    Gunawan, D.
    Pasaribu, A.
    Rahmat, R. F.
    Budiarto, R.
    IAES INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS, 2017, 190