General Product Nonlinear Maps Commuting with the λ-Aluthge Transform

被引:0
|
作者
Chabbabi, Fadil [1 ]
Mbekhta, Mostafa [1 ]
机构
[1] Univ Lille 1, P Painleve UFR Math, Lab CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
General Jordan product; normal; quasi-normal operators; polar decomposition; lambda-Aluthge transform; MATRIX CONVERGE; OPERATORS;
D O I
10.1007/s00009-017-0860-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a complex Hilbert space and B( H) be the algebra of bounded linear operators on H. For n > 2 and T-1, T-2,..., T-n epsilon B( H), the operators are defined as follows: T1T2 ... Tn the usual product and T(1)0T(2)0 ... 0T(n) - 1/2 ( T1T2... T-n+ T-n... T2T1) the general Jordan product of T1,..., Tn. We give a complete characterization of the bijective maps Phi : B( H) -> B( K), where H, K are Hilbert spaces with dimH = 2, that satisfy..( F( T1) * F( T2) * u u u * F( Tn)) = F(..( T1 * T2 * u u u * Tn)) for all T1, T2,..., Tn. B( H), where..( T) is the.- Aluthge transform of T. B( H) and T1 * u u u * Tn stands for the usual product or the general Jordan product of T1,..., Tn. We show that there exists a unitary operator U : H. K and a constant a with a n- 1 = 1, such that F has the form F( T) = aUTU* for all T. B( H).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The λ-Aluthge Transform of EP Matrices
    Pappas, Dimitrios
    Katsikis, Vasilios N.
    Stanimirovic, Predrag S.
    FILOMAT, 2018, 32 (12) : 4403 - 4411
  • [22] Symbolic Computation of the Aluthge Transform
    Pappas, Dimitrios
    Katsikis, V. N.
    Stanimirovic, Ivan P.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [23] Symbolic Computation of the Aluthge Transform
    Dimitrios Pappas
    V. N. Katsikis
    Ivan P. Stanimirović
    Mediterranean Journal of Mathematics, 2017, 14
  • [24] Generalizations of the Aluthge Transform of Operators
    Shebrawi, Khalid
    Bakherad, Mojtaba
    FILOMAT, 2018, 32 (18) : 6465 - 6474
  • [25] Elementary operators and the Aluthge transform
    Botelho, Fernanda
    Jamison, James
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) : 275 - 282
  • [26] The Iterated Aluthge Transform of an Operator
    Il Bong Jung
    Eungil Ko
    Carl Pearcy
    Integral Equations and Operator Theory, 2003, 45 (4) : 375 - 387
  • [27] The iterated Aluthge transform of an operator
    Jung, IB
    Ko, E
    Pearcy, C
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 45 (04) : 375 - 387
  • [28] Aluthge transform of operators on the Bergman space
    Chinmayee Padhy
    Pabitra Kumar Jena
    S. K. Paikray
    Arabian Journal of Mathematics, 2020, 9 : 645 - 651
  • [29] Numerical range of Aluthge transform of operator
    Wu, PY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 (1-3) : 295 - 298
  • [30] Aluthge transform of operators on the Bergman space
    Padhy, Chinmayee
    Jena, Pabitra Kumar
    Paikray, S. K.
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (03) : 645 - 651