Multifaceted fused-CNN based scoring of breast cancer whole-slide histopathology images

被引:29
|
作者
Wahab, Noorul [1 ]
Khan, Asifullah [1 ,2 ,3 ]
机构
[1] Pakistan Inst Engn & Appl Sci, Dept Comp & Informat Sci, PO 45650, Islamabad, Pakistan
[2] Pakistan Inst Engn & Appl Sci, Ctr Math Sci, Deep Learning Lab, PO 45650, Islamabad, Pakistan
[3] Pakistan Inst Engn & Appl Sci, PIEAS Artificial Intelligence Ctr PAIC, PO 45650, Islamabad, Pakistan
关键词
Whole-slide images; Pattern recognition; Breast cancer; Deep convolutional neural networks; Classifier fusion; CLASSIFICATION;
D O I
10.1016/j.asoc.2020.106808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automating the scoring of Whole-Slide Images (WSIs) is a challenging task because the search space for selecting region of interest (ROI) is huge due to the very large sizes of WSIs. A Multifaceted Fused-CNN (MF-CNN) and a Hybrid-Descriptor are proposed to develop an integrated scoring system for Breast Cancer histopathology WSIs. Suitable color and textural features are identified to help mitotic count based selection of ROIs at lower resolution. To recognize complex patterns, the MF-CNN considers multiple facets of the input image. It counts mitoses, extracts handcrafted features from ROIs and utilizes global texture of the images to form a Hybrid-Descriptor for training a classifier assigning scores to WSIs. The proposed system is evaluated on a publicly available benchmark (TUPAC16) and produced the highest score of 0.582 in terms of Cohen's Kappa. It surpassed human experts' level accuracy of ROI selection and can therefore reduce the burden of manual ROI selection for WSIs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images
    Barisoni, Laura
    Troost, Jonathan P.
    Nast, Cynthia
    Bagnasco, Serena
    Avila-Casado, Carmen
    Hodgin, Jeffrey
    Palmer, Matthew
    Rosenberg, Avi
    Gasim, Adil
    Liensziewski, Chrysta
    Merlino, Lino
    Chien, Hui-Ping
    Chang, Anthony
    Meehan, Shane M.
    Gaut, Joseph
    Song, Peter
    Holzman, Lawrence
    Gibson, Debbie
    Kretzler, Matthias
    Gillespie, Brenda W.
    Hewitt, Stephen M.
    MODERN PATHOLOGY, 2016, 29 (07) : 671 - 684
  • [22] Enhanced Multi-Class Breast Cancer Classification from Whole-Slide Histopathology Images Using a Proposed Deep Learning Model
    Rafiq, Adnan
    Jaffar, Arfan
    Latif, Ghazanfar
    Masood, Sohail
    Abdelhamid, Sherif E.
    DIAGNOSTICS, 2025, 15 (05)
  • [23] Few-shot weakly supervised detection and retrieval in histopathology whole-slide images
    van Rijthoven, Mart
    Balkenhol, Maschenka
    Atzori, Manfredo
    Bult, Peter
    van der Laak, Jeroen
    Ciompi, Francesco
    MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY, 2021, 11603
  • [24] Allred Scoring of ER-IHC Stained Whole-Slide Images for Hormone Receptor Status in Breast Carcinoma
    Fauzi, Mohammad Faizal Ahmad
    Ahmad, Wan Siti Halimatul Munirah Wan
    Jamaluddin, Mohammad Fareed
    Lee, Jenny Tung Hiong
    Khor, See Yee
    Looi, Lai Meng
    Abas, Fazly Salleh
    Aldahoul, Nouar
    DIAGNOSTICS, 2022, 12 (12)
  • [25] Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
    Jang, Hyun-Jong
    Song, In-Hye
    Lee, Sung-Hak
    CANCERS, 2021, 13 (15)
  • [26] Digital forensic histopathology whole-slide images library value in cardiomyopathies spectrum education
    Amalinei, C.
    Timofte, A. D.
    Caruntu, I.
    Giusca, S. E.
    Balan, R. A.
    Avadanei, E.
    Lozneanu, L.
    Rusu, A.
    Chifu, M. B.
    Grigoras, A.
    VIRCHOWS ARCHIV, 2024, 485 : S176 - S177
  • [27] A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology
    Anghel, Andreea
    Stanisavljevic, Milos
    Andani, Sonali
    Papandreou, Nikolaos
    Rueschoff, Jan Hendrick
    Wild, Peter
    Gabrani, Maria
    Pozidis, Haralampos
    FRONTIERS IN MEDICINE, 2019, 6
  • [28] DeepBatch: A hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Ramos, Gabriel de Oliveira
    Bohn, Henrique C.
    Santos, Ismael
    Roehe, Adriana Vial
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [29] Real-time segmentation and classification of whole-slide images for tumor biomarker scoring
    Hasan, Md Jahid
    Ahmad, Wan Siti Halimatul Munirah Wan
    Fauzi, Mohammad Faizal Ahmad
    Lee, Jenny Tung Hiong
    Khor, See Yee
    Looi, Lai Meng
    Abas, Fazly Salleh
    Adam, Afzan
    Chan, Elaine Wan Ling
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (09)
  • [30] Identifying Tumor in Whole-Slide images of Breast Cancer Using Transfer Learning and Adaptive Sampling
    Wu, Chenchen
    Ruan, Jun
    Ye, Guanglu
    Zhou, Jingfan
    He, Simin
    Wang, Jianlian
    Zhu, Zhikui
    Yue, Junqiu
    Zhang, Yanggeling
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 167 - 172