Multifaceted fused-CNN based scoring of breast cancer whole-slide histopathology images

被引:29
|
作者
Wahab, Noorul [1 ]
Khan, Asifullah [1 ,2 ,3 ]
机构
[1] Pakistan Inst Engn & Appl Sci, Dept Comp & Informat Sci, PO 45650, Islamabad, Pakistan
[2] Pakistan Inst Engn & Appl Sci, Ctr Math Sci, Deep Learning Lab, PO 45650, Islamabad, Pakistan
[3] Pakistan Inst Engn & Appl Sci, PIEAS Artificial Intelligence Ctr PAIC, PO 45650, Islamabad, Pakistan
关键词
Whole-slide images; Pattern recognition; Breast cancer; Deep convolutional neural networks; Classifier fusion; CLASSIFICATION;
D O I
10.1016/j.asoc.2020.106808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automating the scoring of Whole-Slide Images (WSIs) is a challenging task because the search space for selecting region of interest (ROI) is huge due to the very large sizes of WSIs. A Multifaceted Fused-CNN (MF-CNN) and a Hybrid-Descriptor are proposed to develop an integrated scoring system for Breast Cancer histopathology WSIs. Suitable color and textural features are identified to help mitotic count based selection of ROIs at lower resolution. To recognize complex patterns, the MF-CNN considers multiple facets of the input image. It counts mitoses, extracts handcrafted features from ROIs and utilizes global texture of the images to form a Hybrid-Descriptor for training a classifier assigning scores to WSIs. The proposed system is evaluated on a publicly available benchmark (TUPAC16) and produced the highest score of 0.582 in terms of Cohen's Kappa. It surpassed human experts' level accuracy of ROI selection and can therefore reduce the burden of manual ROI selection for WSIs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
    Suzanne C. Wetstein
    Vincent M. T. de Jong
    Nikolas Stathonikos
    Mark Opdam
    Gwen M. H. E. Dackus
    Josien P. W. Pluim
    Paul J. van Diest
    Mitko Veta
    Scientific Reports, 12
  • [2] Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
    Wetstein, Suzanne C.
    de Jong, Vincent M. T.
    Stathonikos, Nikolas
    Opdam, Mark
    Dackus, Gwen M. H. E.
    Pluim, Josien P. W.
    van Diest, Paul J.
    Veta, Mitko
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Multiclass Classification of Breast Cancer in Whole-Slide Images
    Kwok, Scotty
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 931 - 940
  • [4] CNN-based Method for Lung Cancer Detection in Whole Slide Histopathology Images
    Saric, Matko
    Russo, Mladen
    Stella, Maja
    Sikora, Marjan
    2019 4TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES (SPLITECH), 2019, : 120 - 123
  • [5] Artificial intelligence predicts survival outcome of breast carcinomas on whole-slide histopathology images
    Rynkiewicz, J.
    Paul, J.
    Salhi, Y.
    Bossard, C.
    Salhi, S.
    Chetritt, J.
    VIRCHOWS ARCHIV, 2024, 485 : S58 - S58
  • [6] Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
    Ren, Jian
    Hacihaliloglu, Ilker
    Singer, Eric A.
    Foran, David J.
    Qi, Xin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (MAY):
  • [7] Survival outcome prediction of breast carcinomas on whole-slide histopathology images using deep learning
    Paul, Julian
    Bossard, Celine
    Rynkiewicz, Joseph
    Molinie, Florence
    Salhi, Sanae
    Frenel, Jean-Sebastien
    Salhi, Yahia
    Chetritt, Jerome
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [8] Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images
    Bejnordi, Babak Ehteshami
    Balkenhol, Maschenka
    Litjens, Geert
    Holland, Roland
    Bult, Peter
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2141 - 2150
  • [9] Segmentation of Overlapped Steatosis in Whole-Slide Liver Histopathology Microscopy Images
    Roy, Mousumi
    Wang, Fusheng
    Teodoro, George
    Vos, Miriam B.
    Farris, Alton Brad
    Kong, Jun
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 810 - 813
  • [10] A Fast and Scalable Pipeline for Stain Normalization of Whole-Slide Images in Histopathology
    Stanisavljevic, Milos
    Anghel, Andreea
    Papandreou, Nikolaos
    Andani, Sonali
    Pati, Pushpak
    Ruschoff, Jan Hendrik
    Wild, Peter
    Gabrani, Maria
    Pozidis, Haralampos
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 : 424 - 436