Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier

被引:11
|
作者
Lee, Jinho [1 ,2 ]
Kim, Jin-Soo [3 ]
Lee, Haeng Jin [1 ,4 ]
Kim, Seong-Joon [1 ,4 ]
Kim, Young Kook [1 ,2 ]
Park, Ki Ho [1 ,2 ]
Jeoung, Jin Wook [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Ophthalmol, Coll Med, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Ophthalmol, Div Glaucoma, Seoul, South Korea
[3] Hallym Univ, Dept Ophthalmol, Chuncheon Sacred Heart Hosp, Chunchon, South Korea
[4] Seoul Natl Univ Hosp, Dept Ophthalmol, Div Neuroophthalmol, Seoul, South Korea
关键词
INNER PLEXIFORM; LAYER THICKNESS; IMAGES; DAMAGE;
D O I
10.1136/bjophthalmol-2019-314330
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/aims To assess the performance of a deep learning classifier for differentiation of glaucomatous optic neuropathy (GON) from compressive optic neuropathy (CON) based on ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) spectral-domain optical coherence tomography (SD-OCT). Methods Eighty SD-OCT image sets from 80 eyes of 80 patients with GON along with 81 SD-OCT image sets from 54 eyes of 54 patients with CON were compiled for the study. The bottleneck features extracted from the GCIPL thickness map, GCIPL deviation map, RNFL thickness map and RNFL deviation map were used as predictors for the deep learning classifier. The area under the receiver operating characteristic curve (AUC) was calculated to validate the diagnostic performance. The AUC with the deep learning classifier was compared with those for conventional diagnostic parameters including temporal raphe sign, SD-OCT thickness profile and standard automated perimetry. Results The deep learning system achieved an AUC of 0.990 (95% CI 0.982 to 0.999) with a sensitivity of 97.9% and a specificity of 92.6% in a fivefold cross-validation testing, which was significantly larger than the AUCs with the other parameters: 0.804 (95% CI 0.737 to 0.872) with temporal raphe sign, 0.815 (95% CI 0.734 to 0.896) with superonasal GCIPL and 0.776 (95% CI 0.691 to 0.860) with superior GCIPL thicknesses (all p<0.001). Conclusion The deep learning classifier can outperform the conventional diagnostic parameters for discrimination of GON and CON on SD-OCT.
引用
收藏
页码:1717 / 1723
页数:7
相关论文
共 50 条
  • [21] Toward Spectral-Domain Optical Coherence Tomography on a Chip
    Akca, B. Imran
    Van Duc Nguyen
    Kalkman, Jeroen
    Ismail, Nur
    Sengo, Gabriel
    Sun, Fei
    Driessen, Alfred
    van Leeuwen, Ton G.
    Pollnau, Markus
    Worhoff, Kerstin
    de Ridder, Rene M.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (03) : 1223 - 1233
  • [22] Spectral-domain optical coherence tomography of peripapillary staphyloma
    Se Joon Woo
    Jeong-Min Hwang
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247 : 1573 - 1574
  • [23] Spectral-domain Optical Coherence Tomography for Material Detection
    Qin, Yu Wei
    Zhao, Hong
    MANUFACTURING ENGINEERING AND AUTOMATION II, PTS 1-3, 2012, 591-593 : 1139 - 1142
  • [24] Spectral-domain optical coherence tomography for endoscopic imaging
    Chen, Xiaodong
    Li, Qiao
    Li, Wanhui
    Wang, Yi
    Yu, Daoyin
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE XI, 2007, 6429
  • [25] COMMOTIO RETINAE WITH SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY
    Oh, Jaeryung
    Jung, Jae-Hoon
    Moon, Sang Woong
    Song, Su Jeong
    Yu, Hyeong Gon
    Cho, Hee Yoon
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2011, 31 (10): : 2044 - 2049
  • [26] Spectral-domain optical coherence tomography of macula in myopia
    Choovuthayakorn, Janejit
    Laowong, Taksaorn
    Watanachai, Nawat
    Patikulsila, Direk
    Chaikitmongkol, Voraporn
    INTERNATIONAL OPHTHALMOLOGY, 2016, 36 (03) : 319 - 325
  • [27] FEASIBILITY OF INTRASURGICAL SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY
    Binder, Susanne
    Falkner-Radler, Christiane I.
    Hauger, Christoph
    Matz, Holger
    Glittenberg, Carl
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2011, 31 (07): : 1332 - 1336
  • [28] Orthogonal dispersive spectral-domain optical coherence tomography
    Bao, Wen
    Ding, Zhihua
    Li, Peng
    Chen, Zhiyan
    Shen, Yi
    Wang, Chuan
    OPTICS EXPRESS, 2014, 22 (08): : 10081 - 10090
  • [29] Spectral-Domain Optical Coherence Tomography in Hydroxychloroquine Retinopathy
    Johnston, Janine L.
    Darvill, Patty
    Thomson, Glen T. D.
    OPHTHALMOLOGY, 2015, 122 (03) : 651 - 652
  • [30] Sensitivity and Specificity of Spectral-Domain Optical Coherence Tomography
    Kawai, S.
    Shimizu, S.
    Shinoda, K.
    Suzuki, Y.
    Mizota, A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)