Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier

被引:11
|
作者
Lee, Jinho [1 ,2 ]
Kim, Jin-Soo [3 ]
Lee, Haeng Jin [1 ,4 ]
Kim, Seong-Joon [1 ,4 ]
Kim, Young Kook [1 ,2 ]
Park, Ki Ho [1 ,2 ]
Jeoung, Jin Wook [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Ophthalmol, Coll Med, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Ophthalmol, Div Glaucoma, Seoul, South Korea
[3] Hallym Univ, Dept Ophthalmol, Chuncheon Sacred Heart Hosp, Chunchon, South Korea
[4] Seoul Natl Univ Hosp, Dept Ophthalmol, Div Neuroophthalmol, Seoul, South Korea
关键词
INNER PLEXIFORM; LAYER THICKNESS; IMAGES; DAMAGE;
D O I
10.1136/bjophthalmol-2019-314330
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background/aims To assess the performance of a deep learning classifier for differentiation of glaucomatous optic neuropathy (GON) from compressive optic neuropathy (CON) based on ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) spectral-domain optical coherence tomography (SD-OCT). Methods Eighty SD-OCT image sets from 80 eyes of 80 patients with GON along with 81 SD-OCT image sets from 54 eyes of 54 patients with CON were compiled for the study. The bottleneck features extracted from the GCIPL thickness map, GCIPL deviation map, RNFL thickness map and RNFL deviation map were used as predictors for the deep learning classifier. The area under the receiver operating characteristic curve (AUC) was calculated to validate the diagnostic performance. The AUC with the deep learning classifier was compared with those for conventional diagnostic parameters including temporal raphe sign, SD-OCT thickness profile and standard automated perimetry. Results The deep learning system achieved an AUC of 0.990 (95% CI 0.982 to 0.999) with a sensitivity of 97.9% and a specificity of 92.6% in a fivefold cross-validation testing, which was significantly larger than the AUCs with the other parameters: 0.804 (95% CI 0.737 to 0.872) with temporal raphe sign, 0.815 (95% CI 0.734 to 0.896) with superonasal GCIPL and 0.776 (95% CI 0.691 to 0.860) with superior GCIPL thicknesses (all p<0.001). Conclusion The deep learning classifier can outperform the conventional diagnostic parameters for discrimination of GON and CON on SD-OCT.
引用
收藏
页码:1717 / 1723
页数:7
相关论文
共 50 条
  • [1] Differentiation of Compressive from Glaucomatous Optic Neuropathy with Spectral-Domain Optical Coherence Tomography
    Danesh-Meyer, Helen V.
    Yap, Joel
    Frampton, Christopher
    Savino, Peter J.
    OPHTHALMOLOGY, 2014, 121 (08) : 1516 - 1523
  • [2] Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis
    Ran, An Ran
    Cheung, Carol Y.
    Wang, Xi
    Chen, Hao
    Luo, Lu-yang
    Chan, Poemen P.
    Wong, Mandy O. M.
    Chang, Robert T.
    Mannil, Suria S.
    Young, Alvin L.
    Yung, Hon-wah
    Pang, Chi Pui
    Heng, Pheng-Ann
    Tham, Clement C.
    LANCET DIGITAL HEALTH, 2019, 1 (04): : E172 - E182
  • [3] Comparing Spectral-Domain Optical Coherence Tomography and Standard Automated Perimetry to Diagnose Glaucomatous Optic Neuropathy
    Rao, Harsha L.
    Yadav, Ravi K.
    Addepalli, Uday K.
    Begum, Viquar U.
    Senthil, Sirisha
    Choudhari, Nikhil S.
    Garudadri, Chandra S.
    JOURNAL OF GLAUCOMA, 2015, 24 (05) : e69 - e74
  • [4] Diagnosing Glaucoma With Spectral-Domain Optical Coherence Tomography Using Deep Learning Classifier
    Lee, Jinho
    Kim, Young Kook
    Park, Ki Ho
    Jeoung, Jin Wook
    JOURNAL OF GLAUCOMA, 2020, 29 (04) : 287 - 294
  • [5] Detection of Glaucomatous Progression by Spectral-Domain Optical Coherence Tomography
    Na, Jung Hwa
    Sung, Kyung Rim
    Lee, Jong Rak
    Lee, Kyoung Sub
    Baek, Seunghee
    Kim, Hwang Ki
    Sohn, Yong Ho
    OPHTHALMOLOGY, 2013, 120 (07) : 1388 - 1395
  • [6] Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis
    Dagi, Linda R.
    Tiedemann, Laura M.
    Heidary, Gena
    Robson, Caroline D.
    Hall, Amber M.
    Zurakowski, David
    JOURNAL OF AAPOS, 2014, 18 (06): : 543 - 549
  • [7] Spectral-Domain Optical Coherence Tomography in Autoimmune Disorders with Optic Neuropathy: A Retrospective Analysis of Distinctive Features
    Sriwastava, Shitiz
    Razmjou, Sara
    Lichtman-Mikol, Samuel
    Eslami, Maziar
    Gilroy, Melody
    Bernitsas, Evanthia
    NEUROLOGY, 2019, 92 (15)
  • [8] Spectral-Domain Optical Coherence Tomography of the Vitreopapillary Interface in Acute Nonarteritic Anterior Ischemic Optic Neuropathy
    Thompson, Atalie C.
    Bhatti, M. Tariq
    Gospe, Sidney M., III
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2018, 195 : 199 - 208
  • [9] Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma
    Leitao Guerra, Ricardo Luz
    Marback, Eduardo Ferrari
    Pessoa da Silva, Igor Sandes
    Maia, Otacilio de Oliveira, Jr.
    Marback, Roberto Lorens
    ARQUIVOS BRASILEIROS DE OFTALMOLOGIA, 2014, 77 (06) : 400 - 402
  • [10] Assessment of Early Glaucomatous Optic Neuropathy in the Dog by Spectral Domain Optical Coherence Tomography (SD-OCT)
    Oh, Annie
    Harman, Christine D.
    Koehl, Kristin L.
    Huang, Jiayan
    Teixeira, Leandro B. C.
    Occelli, Laurence M.
    Storey, Eric S.
    Ying, Gui-Shuang
    Komaromy, Andras M.
    MICROMACHINES, 2024, 15 (06)