Three-dimensional tori and Arnold tongues

被引:19
|
作者
Sekikawa, Munehisa [1 ]
Inaba, Naohiko [2 ]
Kamiyama, Kyohei [3 ]
Aihara, Kazuyuki [4 ]
机构
[1] Utsunomiya Univ, Dept Mech & Intelligent Engn, Utsunomiya, Tochigi 3218585, Japan
[2] Meiji Univ, Org Strateg Coordinat Res & Intellectual Property, Kawasaki, Kanagawa 2148571, Japan
[3] Meiji Univ, Dept Elect & Bioinformat, Kawasaki, Kanagawa 2148571, Japan
[4] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
基金
日本学术振兴会;
关键词
DISSIPATIVE DYNAMICAL-SYSTEMS; SADDLE-NODE BIFURCATION; POL OSCILLATOR; FIXED-POINTS; CHAOS; BREAKDOWN; 3D-DIFFEOMORPHISMS; BEHAVIOR; CIRCUIT; VAN;
D O I
10.1063/1.4869303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos
    Nataliya Stankevich
    Evgeny Volkov
    Nonlinear Dynamics, 2018, 94 : 2455 - 2467
  • [12] Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos
    Stankevich, Nataliya
    Volkov, Evgeny
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2455 - 2467
  • [13] Three-Dimensional Effects on Stochasticity in Non-Axisymmetric Tori
    Suzuki, Y.
    Geiger, J.
    Wiegmann, C.
    Liang, Y.
    Ohyabu, N.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (6-7) : 576 - 581
  • [14] Scaling of the Arnold tongues
    Ecke, Robert E.
    Farmer, J. Doyne
    Umberger, David K.
    NONLINEARITY, 1989, 2 (02) : 175 - 196
  • [15] Reshaping Arnold Tongues
    Moreno-Ahedo, Luis
    Collado, Joaquin
    2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATION CONTROL (CCE 2009), 2009, : 307 - 311
  • [16] R-equivalence on three-dimensional tori and zero-cycles
    Merkurjev, Alexander
    ALGEBRA & NUMBER THEORY, 2008, 2 (01) : 69 - 89
  • [17] Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies
    Schartmann, M.
    Meisenheimer, K.
    Camenzind, M.
    Wolf, S.
    Tristram, K.R.W.
    Henning, T.
    Astronomy and Astrophysics, 2008, 482 (01): : 67 - 80
  • [18] Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies
    Schartmann, M.
    Meisenheimer, K.
    Camenzind, M.
    Wolf, S.
    Tristram, K. R. W.
    Henning, T.
    ASTRONOMY & ASTROPHYSICS, 2008, 482 (01) : 67 - 80
  • [19] EXISTENCE OF INVARIANT TORI IN THREE-DIMENSIONAL MEASURE-PRESERVING MAPPINGS
    Cheng, Chong-Qing
    Sun, Yi-Sui
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1989, 47 (03): : 275 - 292
  • [20] Intermingled fractal Arnold tongues
    Paar, V
    Pavin, N
    PHYSICAL REVIEW E, 1998, 57 (02): : 1544 - 1549