Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery

被引:18
|
作者
Mallinson, Sarah L. [1 ]
Varcoe, John R. [1 ]
Slade, Robert C. T. [1 ]
机构
[1] Univ Surrey, Dept Chem, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Vanadium Redox Flow Battery; Anion-Exchange Membrane; Ion Permeability; Membrane Stability; FUEL-CELLS; PROGRESS; STORAGE; STATE; ETFE;
D O I
10.1016/j.electacta.2014.06.058
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The applicability of amine-functionalised anion-exchange membranes (AEMs) for use in the all-vanadium redox flow battery has been studied. A selection of radiation-grafted aminated membranes functionalised with dimethylamine, trimethylamine or diazabicyclo(2,2,2)octane were extensively tested. The success of each grafting process was confirmed by Raman and infrared spectroscopies, titrimetry and ionic conductivity measurements. The amine-functionalised membranes were found to have poor thermo-oxidative stability and high vanadium cation permeabilities. The results highlight the importance of balancing ionic conductivity with vanadium cation permeability and indicate that amine-based functional groups may not be suitably stable for the membranes to remain true AEMs when in use in the all-vanadium redox flow battery. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [41] Modelling the effects of oxygen evolution in the all-vanadium redox flow battery
    Al-Fetlawi, H.
    Shah, A. A.
    Walsh, F. C.
    ELECTROCHIMICA ACTA, 2010, 55 (09) : 3192 - 3205
  • [42] Research progress in preparation of electrolyte for all-vanadium redox flow battery
    Guo, Yun
    Huang, Jie
    Feng, Jun-Kai
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 118 : 33 - 43
  • [43] Anion Exchange Membranes for Vanadium Redox Flow Batteries
    Chen, Dongyang
    Hickner, Michael A.
    Agar, Ertan
    Kumbur, E. Caglan
    STATIONARY AND LARGE SCALE ELECTRICAL ENERGY STORAGE 2, 2013, 53 (07): : 83 - 89
  • [44] Verified reduction of dimensionality for an all-vanadium redox flow battery model
    Sharma, A. K.
    Ling, C. Y.
    Birgersson, E.
    Vynnycky, M.
    Han, M.
    JOURNAL OF POWER SOURCES, 2015, 279 : 345 - 350
  • [45] Model of charge/discharge operation for all-vanadium redox flow battery
    Li, Minghua
    Fan, Yongsheng
    Wang, Baoguo
    Huagong Xuebao/CIESC Journal, 2014, 65 (01): : 313 - 318
  • [46] Thermal modeling and temperature control of an all-vanadium redox flow battery
    Shen, HaiFeng
    Zhu, XinJian
    Cao, Hongfei
    Xue, Binqiang
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 432 - 437
  • [47] Exfoliated Graphene Composite Membrane for the All-Vanadium Redox Flow Battery
    Pahlevaninezhad, Maedeh
    Miller, Elizabeth Esther
    Yang, Lixin
    Prophet, Lauren Sarah
    Singh, Ashutosh
    Storwick, Thomas
    Pahlevani, Majid
    Pope, Michael A.
    Roberts, Edward P. L.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (12) : 6505 - 6517
  • [48] An All-Vanadium Redox Flow Battery: A Comprehensive Equivalent Circuit Model
    Yesilyurt, Muhammed Samil
    Yavasoglu, Huseyin Ayhan
    ENERGIES, 2023, 16 (04)
  • [49] Comprehensive Analysis of Critical Issues in All-Vanadium Redox Flow Battery
    Huang, Zebo
    Mu, Anle
    Wu, Longxing
    Yang, Bin
    Qian, Ye
    Wang, Jiahui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (24) : 7786 - 7810
  • [50] An enhancement to Vynnycky's model for the all-vanadium redox flow battery
    Chen, Ching Liang
    Yeoh, Hak Koon
    Chakrabarti, Mohammed Harun
    ELECTROCHIMICA ACTA, 2014, 120 : 167 - 179