Different roles of quantum interference in a quantum dot photocell with two intermediate bands

被引:4
|
作者
Zhao, Shun-Cai [1 ]
Chen, Jing-Yi [1 ]
Li, Xin [1 ]
机构
[1] Kunming Univ Sci & Technol, Dept Phys, Fac Sci, Kunming 650500, Yunnan, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2020年 / 135卷 / 11期
基金
中国国家自然科学基金;
关键词
SERIES RESISTANCE; EFFICIENCY; PHOTONS;
D O I
10.1140/epjp/s13360-020-00913-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is generally believed that quantum interference can improve the transport of photo-generated carriers in a photocell, thereby improve the photoelectric conversion efficiency. In this work, we explicitly explore different roles of quantum interferences in the photoelectric conversion efficiency in a quantum dot (QD) photocell with two intermediate bands. The increasing transition rates from different charge transport channels bring out first increasing, then decreasing, and then monotonically decreasing photoelectric conversion efficiencies. And the photoelectric conversions increase with quantum coherence generated by the upper transition rates owing to their robust quantum interference. However, the conversion efficiency decreases with the quantum interference induced by two lower-transition rates due to the shortened population lifetime in the intermediate bands. These results provide insight into different roles of quantum interferences in photoelectric conversion efficiency, and may provide some artificial strategies to achieve efficient photoelectric conversion via the adjusted quantum interferences in a QD photocell with multi-intermediate bands.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Performance Comparison for Different Material Quantum Dot Single Intermediate Band Solar Cells
    Wei, Wensheng
    Shan, Feng
    Zhao, Shaoyun
    Zhang, Qiubo
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 404 - 411
  • [42] Room-temperature quantum interference in single perovskite quantum dot junctions
    Zheng, Haining
    Hou, Songjun
    Xin, Chenguang
    Wu, Qingqing
    Jiang, Feng
    Tan, Zhibing
    Zhou, Xin
    Lin, Luchun
    He, Wenxiang
    Li, Qingmin
    Zheng, Jueting
    Zhang, Longyi
    Liu, Junyang
    Yang, Yang
    Shi, Jia
    Zhang, Xiaodan
    Zhao, Ying
    Li, Yuelong
    Lambert, Colin
    Hong, Wenjing
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [43] Single dot spectroscopy of two-color quantum dot/quantum shell nanostructures
    Dias, Eva A.
    Grimes, Amy F.
    English, Douglas S.
    Kambhampati, Patanjali
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (37): : 14229 - 14232
  • [44] Quantum control of two interacting electrons in a coupled quantum dot
    Song Hong-Zhou
    Zhang Ping
    Duan Su-Qing
    Zhao Xian-Geng
    CHINESE PHYSICS, 2006, 15 (09): : 2130 - 2141
  • [45] Quantum control of two interacting electrons in a coupled quantum dot
    Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
    Chin. Phys., 2006, 9 (2130-2141):
  • [46] ADVANCES IN QUANTUM DOT INTERMEDIATE BAND SOLAR CELLS
    Antolin, E.
    Marti, A.
    Linares, P. G.
    Ramiro, I.
    Hernandez, E.
    Farmer, C. D.
    Stanley, C. R.
    Luque, A.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [47] Superstatistics of two electrons quantum dot
    Sargolzaeipor, S.
    Hassanabadi, H.
    Chung, W. S.
    MODERN PHYSICS LETTERS A, 2019, 34 (03)
  • [48] Interference and non-interference of sidebands in a quantum dot with oscillating levels
    Pan, LX
    Yang, M
    Li, SS
    SUPERLATTICES AND MICROSTRUCTURES, 2005, 38 (02) : 115 - 121
  • [49] Quantum dot between two superconductors
    Avishai, Y
    Golub, A
    Zaikin, AD
    EUROPHYSICS LETTERS, 2001, 54 (05): : 640 - 646
  • [50] Interference in a quantum dot molecule embedded in a ring interferometer
    Ihn, Thomas
    Sigrist, Martin
    Ensslin, Klaus
    Wegscheider, Werner
    Reinwald, Matthias
    NEW JOURNAL OF PHYSICS, 2007, 9