Multi-Robot Coalition Formation Problem: Task Allocation with Adaptive Immigrants Based Genetic Algorithms

被引:0
|
作者
Rauniyar, Amit [1 ]
Muhuri, Pranab K. [1 ]
机构
[1] South Asian Univ, Dept Comp Sci, New Delhi 110021, India
关键词
Multi-robot; Robots; coalition formation; Task allocation; adaptive immigrants; Genetic algorithm;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-robot coalition formation (MRCF) problem deals with the formation of subsets of robotic to handle a particular task. In such a system, every task is executed by multiple robots. Thus, cooperation and coordination among the robots is very important. One of the key issues to be investigated for smooth operation of a multi-robot systems is finding an optimal task allocation among the suitably formed robot groups (sub sets). Considering the complete execution of available tasks, the problem of assigning available resources (robot features) to the tasks is computationally complex, which may further increase as number of tasks increases. Genetic algorithms (GA) have been found quite efficient in solving such complex computational problems. There are several algorithms based on GA to solve MRCF problems but none of them have considered the dynamic variants. Thus we apply immigrants based GAs viz. RIGA (random immigrants genetic algorithm) and EIGA (elitism based immigrants genetic algorithm) to optimal task allocation in MRCF problem. Comparative performance evaluation has been made with respect to SGA (standard genetic algorithm). Finally, we report a novel use of these algorithms making them adaptive with certain modification in their traditional attributes by adaptively choosing the parameters of genetic operators. We name them as aRIGA (adaptive RIGA) and aEIGA (adaptive EIGA). Simulations experiments have demonstrated that RIGA and EIGA produces better solutions then SGA in both the cases (with fixed and adaptive genetic operators). Among them, EIGA and aEIGA outperforms RIGA and aRIGA respectively.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [41] Discrete Genetic Algorithm for Solving Task Allocation of Multi-robot Systems
    Soleimanpour-Moghadam, Mohadese
    Nezamabadi-Pour, Hossein
    2020 4TH CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2020, : 6 - 9
  • [42] Adaptive Task Allocation for Heterogeneous Multi-Robot Teams with Evolving and Unknown Robot Capabilities
    Emam, Yousef
    Mayya, Siddharth
    Notomista, Gennaro
    Bohannon, Addison
    Egerstedt, Magnus
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 7719 - 7725
  • [43] Combinatorial bids based multi-robot task allocation method
    Lin, L
    Zheng, ZQ
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 1145 - 1150
  • [44] Sensor network-based multi-robot task allocation
    Batalin, MA
    Sukhatme, GS
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 1939 - 1944
  • [45] SMT-Based Dynamic Multi-Robot Task Allocation
    Tuck, Victoria Marie
    Chen, Pei-Wei
    Fainekos, Georgios
    Hoxha, Bardh
    Okamoto, Hideki
    Sastry, S. Shankar
    Seshia, Sanjit A.
    NASA FORMAL METHODS, NFM 2024, 2024, 14627 : 331 - 351
  • [46] Resource-based task allocation for multi-robot systems
    Lee, Dong-Hyun
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 103 : 151 - 161
  • [47] Multi-robot Task Allocation Based on Ant Colony Algorithm
    Wang, Jian-Ping
    Gu, Yuesheng
    Li, Xiao-Min
    JOURNAL OF COMPUTERS, 2012, 7 (09) : 2160 - 2167
  • [48] Market-based Approach to Multi-robot Task Allocation
    Hussein, Ahmed
    Khamis, Alaa
    2013 INTERNATIONAL CONFERENCE ON INDIVIDUAL AND COLLECTIVE BEHAVIORS IN ROBOTICS (ICBR), 2013, : 69 - 74
  • [49] Multi-robot task allocation clustering based on game theory
    Martin, Javier G.
    Muros, Francisco Javier
    Maestre, Jose Maria
    Camacho, Eduardo F.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 161
  • [50] A framework for studying multi-robot task allocation
    Gerkey, BP
    Mataric, MJ
    MULTI-ROBOT SYSTEMS: FROM SWARMS TO INTELLIGENT AUTOMATA, VOL II, 2003, : 15 - 26