Nanocrystalline Diamond Integration with III-Nitride HEMTs

被引:39
|
作者
Anderson, T. J. [1 ]
Hobart, K. D. [1 ]
Tadjer, M. J. [1 ]
Koehler, A. D. [1 ]
Imhoff, E. A. [1 ]
Hite, J. K. [1 ]
Feygelson, T. I. [1 ]
Pate, B. B. [1 ]
Eddy, C. R., Jr. [1 ]
Kub, F. J. [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
关键词
ELECTRON-MOBILITY TRANSISTORS; ALGAN/GAN; NANODIAMOND; FILMS;
D O I
10.1149/2.0071702jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced performance in Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. To mitigate this effect, the incorporation of high thermal conductivity diamond heat spreading films or substrates has been proposed. A mid-process integration scheme, termed "gate-after-diamond," is shown to improve the thermal budget for NCD deposition and enables scalable, large-area diamond coating without degrading the Schottky gate metal. The optimization of this process step is presented in this work. Nanocrystalline (NCD)-capped devices had a 20% lower channel temperature at equivalent power dissipation. Improved electrical characteristics were also observed, notably improved on-resistance and breakdown voltage, and reduced gate leakage. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:Q3036 / Q3039
页数:4
相关论文
共 50 条
  • [41] III-Nitride on Silicon Photonic Circuits
    Boucaud, P.
    Roland, I.
    Zeng, Y.
    Tabataba-Vakili, F.
    El Kurdi, M.
    Sauvage, S.
    Checoury, X.
    Gromovyi, M.
    Rennesson, S.
    Semond, F.
    Duboz, J. -Y.
    de Micheli, M.
    Selles, J.
    Brimont, C.
    Guillet, T.
    Gayral, B.
    2017 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2017, : 49 - 50
  • [42] Progress in Modeling of III-Nitride MOVPE
    Dauelsberg, Martin
    Talalaev, Roman
    PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2020, 66 (03)
  • [43] III-Nitride Electronic Devices Preface
    Chu, Rongming
    Shinohara, Keisuke
    III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : XI - XII
  • [44] Defects in III-nitride microdisk cavities
    Ren, C. X.
    Puchtler, T. J.
    Zhu, T.
    Griffiths, J. T.
    Oliver, R. A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (03)
  • [45] Polarization doping for III-nitride optoelectronics
    Khokhlev, Oleg V.
    Bulashevich, Kirill A.
    Karpov, Sergey Yu.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (07): : 1369 - 1376
  • [46] Emerging Applications of III-Nitride Nanocrystals
    Liu, Xianhe
    Chowdhury, Faqrul A.
    Vanka, Srinivas
    Chu, Sheng
    Mi, Zetian
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (07):
  • [47] III-Nitride Nanowire Light Sources
    Bhattacharya, Pallab
    2014 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, 2014, : 25 - 26
  • [48] III-Nitride microwave power transistors
    Moon, Jeong-Sun
    III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : 115 - 140
  • [49] Perspectives for III-nitride photonic platforms
    Boucaud, Philippe
    Bhat, Nagesh
    Gromovyi, Maksym
    El Kurdi, Moustafa
    Reserbat-Plantey, Antoine
    Dau, Minh Tuan
    Al Khalfioui, Mohamed
    Alloing, Blandine
    Damilano, Benjamin
    Semond, Fabrice
    NANO FUTURES, 2024, 8 (02)
  • [50] III-Nitride UV Emitters and Their Applications
    Khan, Asif
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,