Computational fluid dynamics by boundary-domain integral method

被引:0
|
作者
Skerget, L
Hribersek, M
Kuhn, G
机构
[1] Univ Maribor, Fac Mech Engn, SI-2000 Maribor, Slovenia
[2] Univ Erlangen Nurnberg, Lehrstuhl Tech Mech, D-91058 Erlangen, Germany
关键词
boundary element methods; viscous fluid flow; heat transfer; diffusion-convective fundamental solution; subdomain technique;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A boundary-domain integral method for the solution of general transport phenomena in incompressible fluid motion given by the Navier-Stokes equation set is presented. Velocity-vorticity formulation of the conservation equations is employed. Different integral representations for conservation field functions based on different fundamental solutions are developed. Special attention is given to the use of subdomain technique and Krylov subspace iterative solvers. The computed solutions of several benchmark problems agree well with available experimental and other computational results. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:1291 / 1311
页数:21
相关论文
共 50 条
  • [31] Krylov subspace and domain decomposition methods in 2D viscous flow by boundary-domain integral method
    Hribersek, M
    Skerget, L
    IABEM SYMPOSIUM ON BOUNDARY INTEGRAL METHODS FOR NONLINEAR PROBLEMS, 1997, : 107 - 114
  • [32] Multigrid method in velocity-vorticity formulation of Navier-Stokes equations by boundary-domain integral method
    Hribersek, M
    Skerget, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S573 - S574
  • [33] Astrophysical applications of a boundary integral method for fluid dynamics
    Korycansky, DG
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (01) : 110 - 116
  • [34] Localized boundary-domain integral equation formulation for mixed type problems
    Chkadua, Otar
    Mikhailov, Sergey E.
    Natroshvili, David
    GEORGIAN MATHEMATICAL JOURNAL, 2010, 17 (03) : 469 - 494
  • [35] Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method
    Yang, Y.
    Lam, C. C.
    Kou, K. P.
    Iu, V. P.
    COMPOSITE STRUCTURES, 2014, 117 : 32 - 39
  • [36] A comparative study of three domain-integral evaluation techniques in the boundary-domain integral equation method for transient thermoelastic crack analysis in FGMs
    Ekhlakov, A. V.
    Khay, O. M.
    Zhang, Ch.
    Gao, X. W.
    Sladek, J.
    Sladek, V.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 92 (06): : 595 - 614
  • [37] Solving the fluid flow problems with boundary domain integral method
    Mardanov, R. F.
    Sharafutdinov, V. F.
    Ibragimov, I. Z.
    Zaripov, S. K.
    Baganina, A. E.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158
  • [38] PRESSURE-DROP CALCULATIONS FOR TUBE BUNDLES IN CROSS-FLOW BY THE BOUNDARY-DOMAIN INTEGRAL METHOD
    ZAGAR, I
    SKERGET, P
    ALUJEVIC, A
    HRIBERSEK, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (05): : T395 - T398
  • [39] THE NUMERICAL-SIMULATION OF NONLINEAR SEPARATION COLUMNS BY BOUNDARY-DOMAIN INTEGRAL FORMULATION
    ZAGAR, I
    SKERGET, L
    COMPUTERS & CHEMICAL ENGINEERING, 1995, 19 : S785 - S790
  • [40] Domain decomposition methods for fluid flow problems by the boundary domain integral method
    Hribersek, M
    Skerget, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 425 - 426