Using Raman Spectroscopy and SERS for in-situ studies of rhizosphere bacteria

被引:2
|
作者
Polisetti, Sneha [1 ]
Baig, Nameera [2 ]
Bible, Amber [3 ]
Morrell-Falvey, Jennifer [3 ]
Doktycz, Mitchel [3 ]
Bohn, Paul W. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Chem, Notre Dame, IN 46556 USA
[3] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA
来源
关键词
Raman spectroscopy; bacteria; SERS; auxins; pyocyanin; SURFACE-ENHANCED RAMAN; BIOFILMS;
D O I
10.1117/12.2188647
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Resonance Raman spectroscopy for in-situ monitoring of radiation damage
    Meents, A.
    Owen, R. L.
    Murgida, D.
    Hildebrande, P.
    Schneider, R.
    Pradervand, C.
    Bohler, P.
    Schulze-Briese, C.
    SYNCHROTRON RADIATION INSTRUMENTATION, PTS 1 AND 2, 2007, 879 : 1984 - +
  • [42] Raman-Fluorescence Spectroscopy for Underwater in-situ Application
    Guo Jin-jia
    Zhang Feng
    Liu Chun-hao
    Li Ying
    Zheng Rong-er
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37 (10) : 3099 - 3102
  • [43] IN-SITU RAMAN-SPECTROSCOPY OF REACTIONS IN SUPERCRITICAL WATER
    MASTEN, DA
    FOY, BR
    HARRADINE, DM
    DYER, RB
    JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (33): : 8557 - 8559
  • [44] In-Situ Raman Spectroscopy of α- and γ-FeOOH during Cathodic Load
    Hedenstedt, K.
    Backstrom, J.
    Ahlberg, E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : H621 - H627
  • [45] In-situ monitoring of urethane formation by FTIR and Raman spectroscopy
    Xu, LF
    Li, C
    Ng, KYS
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (17): : 3952 - 3957
  • [46] Raman spectroscopy for in-situ characterisation of steam generator deposits
    Rochefort, PA
    Guzonas, DA
    Turner, CW
    NONDESTRUCTIVE CHARACTERIZATION OF MATERIALS VIII, 1998, : 811 - 816
  • [47] COUPLED IN-SITU RAMAN-SCATTERING AND IMPEDANCE SPECTROSCOPY
    LORIDANT, S
    LUCAZEAU, G
    ANALUSIS, 1995, 23 (02) : M17 - M19
  • [48] Quantitative application of in-situ Raman spectroscopy in polymorphic transformation
    Li, Yi
    Pui Shan Chow
    Tan, Reginald B. H.
    Lee, Sie Huey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [49] In-Situ Monitoring of the Curing of Epoxy Resins by Raman Spectroscopy
    Merad, L.
    Cochez, M.
    Margueron, S.
    Jauchem, F.
    Ferriol, M.
    Benyoucef, B.
    Bourson, P.
    NAMES 2007: 3RD FRANCE-RUSSIA SEMINAR, PROCEEDINGS, 2008, : 155 - +
  • [50] Characterization of chemical doping of graphene by in-situ Raman spectroscopy
    Kim, S. J.
    Park, S. J.
    Kim, H. Y.
    Jang, G. S.
    Park, D. J.
    Park, Ji-Yong
    Lee, Soonil
    Ahn, Y. H.
    APPLIED PHYSICS LETTERS, 2016, 108 (20)