Efficient GPU Implementation of Lucas-Kanade through OpenACC

被引:4
|
作者
Haggui, Olfa [1 ,2 ]
Tadonki, Claude [1 ]
Sayadi, Fatma [3 ]
Ouni, Bouraoui [2 ]
机构
[1] PSL Res Univ, Mines ParisTech, Ctr Rech Informat CRI, 60 Blvd St Michel, F-75006 Paris, France
[2] Sousse Natl Sch Engn, Networked Objects Control & Commun Syst NOCCS, BP 264 Sousse, Sousse 4023, Erriadh, Tunisia
[3] Fac Sci, Elect & Microelect Lab, Sousse, Tunisia
关键词
Optical Flow; Lucas-Kanade; Multicore; Manycore; GPU; OpenACC;
D O I
10.5220/0007272107680775
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Optical flow estimation stands as an essential component for motion detection and object tracking procedures. It is an image processing algorithm, which is typically composed of a series of convolution masks (approximation of the derivatives) followed by 2 x 2 linear systems for the optical flow vectors. Since we are dealing with a stencil computation for each stage of the algorithm, the overhead from memory accesses is expected to be significant and to yield a genuine scalability bottleneck, especially with the complexity of GPU memory configuration. In this paper, we investigate a GPU deployment of an optimized CPU implementation via OpenACC, a directive-based parallel programming model and framework that ease the process of porting codes to a wide-variety of heterogeneous HPC hardware platforms and architectures. We explore each of the major technical features and strive to get the best performance impact. Experimental results on a Quadro P5000 are provided together with the corresponding technical discussions, taking the performance of the multicore version on a INTEL Broadwell EP as the baseline.
引用
收藏
页码:768 / 775
页数:8
相关论文
共 50 条
  • [21] Optimal Filter Estimation for Lucas-Kanade Optical Flow
    Sharmin, Nusrat
    Brad, Remus
    SENSORS, 2012, 12 (09) : 12694 - 12709
  • [22] Dynamically Removing False Features in Pyramidal Lucas-Kanade Registration
    Niu, Yan
    Xu, Zhiwen
    Che, Xiangjiu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3535 - 3544
  • [23] Feature-Based Lucas-Kanade and Active Appearance Models
    Antonakos, Epameinondas
    Alabort-i-Medina, Joan
    Tzimiropoulos, Georgios
    Zafeiriou, Stefanos P.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (09) : 2617 - 2632
  • [24] Learning Deep Lucas-Kanade Siamese Network for Visual Tracking
    Yao, Siyuan
    Han, Xiaoguang
    Zhang, Hua
    Wang, Xiao
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4814 - 4827
  • [25] 基于Lucas-Kanade算法的目标跟踪研究
    崔建红
    李银兵
    赵海茹
    李玉秀
    杨伟
    李国瑞
    电脑知识与技术, 2023, 19 (31) : 25 - 27
  • [26] Evaluation of an OpenMP Parallelization of Lucas-Kanade on a NUMA-Manycore
    Haggui, Olfa
    Tadonki, Claude
    Sayadi, Fatma
    Ouni, Bouraoui
    2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 436 - 441
  • [27] Lucas-Kanade fluid trajectories for time-resolved PIV
    Yegavian, Robin
    Leclaire, Benjamin
    Champagnat, Frederic
    Illoul, Cedric
    Losfeld, Gilles
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (08)
  • [28] Face tracking in video with hybrid of Lucas-Kanade and condensation algorithm
    Luo, C
    Chua, TS
    Ng, TK
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 293 - 296
  • [29] Lucas-Kanade based entropy congealing for joint face alignment
    Ni, Weiyuan
    Ngoc-Son Vu
    Caplier, Alice
    IMAGE AND VISION COMPUTING, 2012, 30 (12) : 954 - 965
  • [30] Uncertainty Guided Deep Lucas-Kanade Homography for Multimodal Image Alignment
    Zhou, Zhen
    Luo, Jianqiao
    Zhu, Qing
    Wang, Yaonan
    Zhong, Hang
    Feng, Mingtao
    Chen, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63