On two four term arithmetic progressions with equal product

被引:0
|
作者
Bremner, Andrew [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2020年 / 52卷
关键词
LENGTHS;
D O I
10.33039/ami.2020.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate when two four-term arithmetic progressions have an equal product of their terms. This is equivalent to studying the (arithmetic) geometry of a non-singular quartic surface. It turns out that there are many polynomial parametrizations of such progressions, and it is likely that there exist polynomial parametrizations of every positive degree. We find all such parametrizations for degrees 1 to 4, and give examples of parametrizations for degrees 5 to 10.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 50 条
  • [41] Almost disjoint families of 3-term arithmetic progressions
    Ardal, H
    Brown, TC
    Pleasants, PAB
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (01) : 75 - 90
  • [42] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [43] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [44] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204
  • [45] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [46] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [47] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [48] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [49] Unique Sequences Containing No k-Term Arithmetic Progressions
    Ahmed, Tanbir
    Dybizbanski, Janusz
    Snevily, Hunter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):
  • [50] 14-term Arithmetic Progressions on Quartic Elliptic Curves
    MacLeod, Allan J.
    JOURNAL OF INTEGER SEQUENCES, 2006, 9 (01)