On two four term arithmetic progressions with equal product
被引:0
|
作者:
Bremner, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USAArizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
Bremner, Andrew
[1
]
机构:
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
来源:
ANNALES MATHEMATICAE ET INFORMATICAE
|
2020年
/
52卷
关键词:
LENGTHS;
D O I:
10.33039/ami.2020.02.001
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate when two four-term arithmetic progressions have an equal product of their terms. This is equivalent to studying the (arithmetic) geometry of a non-singular quartic surface. It turns out that there are many polynomial parametrizations of such progressions, and it is likely that there exist polynomial parametrizations of every positive degree. We find all such parametrizations for degrees 1 to 4, and give examples of parametrizations for degrees 5 to 10.
机构:
UNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLANDUNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLAND
COOK, R
SHARPE, D
论文数: 0引用数: 0
h-index: 0
机构:
UNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLANDUNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLAND