Public-Key Function-Private Hidden Vector Encryption (and More)

被引:6
|
作者
Bartusek, James [1 ]
Carmer, Brent [2 ]
Jain, Abhishek [3 ]
Jin, Zhengzhong [3 ]
Lepoint, Tancrede [4 ]
Ma, Fermi [5 ]
Malkin, Tal [6 ]
Malozemoff, Alex J. [2 ]
Raykova, Mariana [4 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Galois, Portland, OR USA
[3] Johns Hopkins Univ, Baltimore, MD USA
[4] Google, Mountain View, CA 94043 USA
[5] Princeton Univ, Princeton, NJ 08544 USA
[6] Columbia Univ, New York, NY USA
基金
美国国家科学基金会;
关键词
SUPPORTING DISJUNCTIONS; POLYNOMIAL EQUATIONS;
D O I
10.1007/978-3-030-34618-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We construct public-key function-private predicate encryption for the "small superset functionality," recently introduced by Beullens and Wee (PKC 2019). This functionality captures several important classes of predicates: - Point functions. For point function predicates, our construction is equivalent to public-key function-private anonymous identity-based encryption. - Conjunctions. If the predicate computes a conjunction, our construction is a public-key function-private hidden vector encryption scheme. This addresses an open problem posed by Boneh, Raghunathan, and Segev (ASIACRYPT 2013). - d-CNFs and read-once conjunctions of d-disjunctions for constantsize d. Our construction extends the group-based obfuscation schemes of Bishop et al. (CRYPTO 2018), Beullens and Wee (PKC 2019), and Bartusek et al. (EUROCRYPT 2019) to the setting of public-key function-private predicate encryption. We achieve an average-case notion of function privacy, which guarantees that a decryption key skf reveals nothing about f as long as f is drawn from a distribution with sufficient entropy. We formalize this security notion as a generalization of the (enhanced) real-orrandom function privacy definition of Boneh, Raghunathan, and Segev (CRYPTO 2013). Our construction relies on bilinear groups, and we prove security in the generic bilinear group model.
引用
收藏
页码:489 / 519
页数:31
相关论文
共 50 条
  • [31] Incremental Deterministic Public-Key Encryption
    Ilya Mironov
    Omkant Pandey
    Omer Reingold
    Gil Segev
    Journal of Cryptology, 2018, 31 : 134 - 161
  • [32] Integer Reconstruction Public-Key Encryption
    Ferradi, Houda
    Naccache, David
    CRYPTOLOGY AND NETWORK SECURITY (CANS 2019), 2019, 11829 : 412 - 433
  • [33] Parallel authentication and public-key encryption
    Pieprzyk, J
    Pointcheval, D
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2003, 2727 : 387 - 401
  • [34] Incremental Deterministic Public-Key Encryption
    Mironov, Ilya
    Pandey, Omkant
    Reingold, Omer
    Segev, Gil
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2012, 2012, 7237 : 628 - 644
  • [35] Universally anonymizable public-key encryption
    Hayashi, R
    Tanaka, K
    ADVANCES IN CRYPTOLOGY ASIACRYPT 2005, 2005, 3788 : 293 - 312
  • [36] Public-Key Encryption with Delegated Search
    Ibraimi, Luan
    Nikova, Svetla
    Hartel, Pieter
    Jonker, Willem
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY (ACNS 2011), 2011, 6715 : 532 - 549
  • [37] A new approach to practical function-private inner product encryption
    Kim, Sungwook
    Kim, Jinsu
    Seo, Jae Hong
    THEORETICAL COMPUTER SCIENCE, 2019, 783 : 22 - 40
  • [38] A new public-key encryption scheme
    Tian, Hai-Bo
    Sun, Xi
    Wang, Yu-Min
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2007, 22 (01) : 95 - 102
  • [39] Function-Private Subspace-Membership Encryption and Its Applications
    Boneh, Dan
    Raghunathan, Ananth
    Segev, Gil
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013, PT I, 2013, 8269 : 255 - 275
  • [40] Bi-Deniable Public-Key Encryption
    O'Neill, Adam
    Peikert, Chris
    Waters, Brent
    ADVANCES IN CRYPTOLOGY - CRYPTO 2011, 2011, 6841 : 525 - 542