Public-Key Function-Private Hidden Vector Encryption (and More)

被引:6
|
作者
Bartusek, James [1 ]
Carmer, Brent [2 ]
Jain, Abhishek [3 ]
Jin, Zhengzhong [3 ]
Lepoint, Tancrede [4 ]
Ma, Fermi [5 ]
Malkin, Tal [6 ]
Malozemoff, Alex J. [2 ]
Raykova, Mariana [4 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Galois, Portland, OR USA
[3] Johns Hopkins Univ, Baltimore, MD USA
[4] Google, Mountain View, CA 94043 USA
[5] Princeton Univ, Princeton, NJ 08544 USA
[6] Columbia Univ, New York, NY USA
基金
美国国家科学基金会;
关键词
SUPPORTING DISJUNCTIONS; POLYNOMIAL EQUATIONS;
D O I
10.1007/978-3-030-34618-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We construct public-key function-private predicate encryption for the "small superset functionality," recently introduced by Beullens and Wee (PKC 2019). This functionality captures several important classes of predicates: - Point functions. For point function predicates, our construction is equivalent to public-key function-private anonymous identity-based encryption. - Conjunctions. If the predicate computes a conjunction, our construction is a public-key function-private hidden vector encryption scheme. This addresses an open problem posed by Boneh, Raghunathan, and Segev (ASIACRYPT 2013). - d-CNFs and read-once conjunctions of d-disjunctions for constantsize d. Our construction extends the group-based obfuscation schemes of Bishop et al. (CRYPTO 2018), Beullens and Wee (PKC 2019), and Bartusek et al. (EUROCRYPT 2019) to the setting of public-key function-private predicate encryption. We achieve an average-case notion of function privacy, which guarantees that a decryption key skf reveals nothing about f as long as f is drawn from a distribution with sufficient entropy. We formalize this security notion as a generalization of the (enhanced) real-orrandom function privacy definition of Boneh, Raghunathan, and Segev (CRYPTO 2013). Our construction relies on bilinear groups, and we prove security in the generic bilinear group model.
引用
收藏
页码:489 / 519
页数:31
相关论文
共 50 条
  • [1] Power of public-key function-private functional encryption
    Iovino, Vincenzo
    Tang, Qiang
    Zebrowski, Karol
    IET INFORMATION SECURITY, 2018, 12 (04) : 248 - 256
  • [2] On the Power of Public-key Function-Private Functional Encryption
    Iovino, Vincenzo
    Tang, Qiang
    Zebrowski, Karol
    CRYPTOLOGY AND NETWORK SECURITY, CANS 2016, 2016, 10052 : 585 - 593
  • [3] Function-Private Functional Encryption in the Private-Key Setting
    Brakerski, Zvika
    Segev, Gil
    JOURNAL OF CRYPTOLOGY, 2018, 31 (01) : 202 - 225
  • [4] Function-Private Functional Encryption in the Private-Key Setting
    Brakerski, Zvika
    Segev, Gil
    THEORY OF CRYPTOGRAPHY (TCC 2015), PT II, 2015, 9015 : 306 - 324
  • [5] Function-Private Functional Encryption in the Private-Key Setting
    Zvika Brakerski
    Gil Segev
    Journal of Cryptology, 2018, 31 : 202 - 225
  • [6] Function-private functional encryption in the private-key setting
    Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot
    76100, Israel
    不详
    91904, Israel
    Lect. Notes Comput. Sci., (306-324):
  • [7] Homomorphic Encryption: From Private-Key to Public-Key
    Rothblum, Ron
    THEORY OF CRYPTOGRAPHY, 2011, 6597 : 219 - 234
  • [8] Hidden-Token Searchable Public-Key Encryption
    Zuo, Cong
    Shao, Jun
    Liu, Zhe
    Ling, Yun
    Wei, Guiyi
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS / 11TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING / 14TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS, 2017, : 248 - 254
  • [9] Building Key-Private Public-Key Encryption Schemes
    Paterson, Kenneth G.
    Srinivasan, Sriramkrishnan
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2009, 5594 : 276 - 292
  • [10] Auditable Hierarchy-Private Public-Key Encryption
    Zhong, Lin
    Wu, Qianhong
    Qin, Bo
    Zheng, Haibin
    Liu, Jianwei
    INFORMATION SECURITY AND PRIVACY, 2018, 10946 : 322 - 340