An Empirical Study of Ranking-Oriented Cross-Project Software Defect Prediction

被引:13
|
作者
You, Guoan [1 ]
Wang, Feng [2 ]
Ma, Yutao [1 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Ranking; single-objective optimization; gradient descent; multiple linear regression; METRICS; NUMBER; FAULTS; MODELS;
D O I
10.1142/S0218194016400155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-project defect prediction (CPDP) has recently become very popular in the field of software defect prediction. It was generally treated as a binary classification problem or a regression problem in most of previous studies. However, these existing CPDP methods may be not suitable for those software projects that have limited manpower and budget. To address the issue of priority estimation for buggy software entities, in this paper CPDP is formulated as a ranking problem. Inspired by the idea of the pointwise approach to learning to rank, we propose a ranking-oriented CPDP approach called ROCPDP. A case study conducted on the datasets collected from AEEEM and PROMISE shows that ROCPDP outperforms the eight baseline methods in two CPDP scenarios, namely one-to-one and many-to-one. Besides, in the many-toone scenario ROCPDP is, by and large, comparable to the best baseline method performed in a specific within-project defect prediction scenario.
引用
收藏
页码:1511 / 1538
页数:28
相关论文
共 50 条
  • [21] Cross-Project Software Defect Prediction Based on Class Code Similarity
    Wen, Wanzhi
    Shen, Chenqiang
    Lu, Xiaohong
    Li, Zhixian
    Wang, Haoren
    Zhang, Ruinian
    Zhu, Ningbo
    IEEE ACCESS, 2022, 10 : 105485 - 105495
  • [22] Research on Cross-Project Software Defect Prediction Based on Machine Learning
    Wang, Baoping
    Wang, Wennan
    Zhu, Linkai
    Liu, Wenjian
    ADVANCES IN WEB-BASED LEARNING - ICWL 2021, 2021, 13103 : 160 - 165
  • [23] Cross-Project Online Just-In-Time Software Defect Prediction
    Tabassum, Sadia
    Minku, Leandro L.
    Feng, Danyi
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (01) : 268 - 287
  • [24] Improving Ranking-Oriented Defect Prediction Using a Cost-Sensitive Ranking SVM
    Yu, Xiao
    Liu, Jin
    Keung, Jacky Wai
    Li, Qing
    Bennin, Kwabena Ebo
    Xu, Zhou
    Wang, Junping
    Cui, Xiaohui
    IEEE TRANSACTIONS ON RELIABILITY, 2020, 69 (01) : 139 - 153
  • [25] An empirical evaluation of defect prediction approaches in within-project and cross-project context
    Bhat, Nayeem Ahmad
    Farooq, Sheikh Umar
    SOFTWARE QUALITY JOURNAL, 2023, 31 (03) : 917 - 946
  • [26] An empirical evaluation of defect prediction approaches in within-project and cross-project context
    Nayeem Ahmad Bhat
    Sheikh Umar Farooq
    Software Quality Journal, 2023, 31 : 917 - 946
  • [27] Cross-Project and Within-Project Semisupervised Software Defect Prediction: A Unified Approach
    Wu, Fei
    Jing, Xiao-Yuan
    Sun, Ying
    Sun, Jing
    Huang, Lin
    Cui, Fangyi
    Sun, Yanfei
    IEEE TRANSACTIONS ON RELIABILITY, 2018, 67 (02) : 581 - 597
  • [28] A Comparative Study to Benchmark Cross-project Defect Prediction Approaches
    Herbold, Steffen
    Trautsch, Alexander
    Grabowski, Jens
    PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2018, : 1063 - 1063
  • [29] Cross-project software defect prediction based on domain adaptation learning and optimization
    Jin, Cong
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 171
  • [30] Using active learning selection approach for cross-project software defect prediction
    Mi, Wenbo
    Li, Yong
    Wen, Ming
    Chen, Youren
    CONNECTION SCIENCE, 2022, 34 (01) : 1482 - 1499