Synthesis of α-Fe2O3@SnO2 core-shell nanoparticles via low-temperature molten salt reaction route

被引:10
|
作者
Liu, Gang [1 ,2 ,3 ]
Sun, Wei-jia [3 ]
Tang, Sha-sha [4 ]
Liang, Shu-quan [4 ]
Liu, Jun [4 ]
机构
[1] Cent S Univ, Xiangya Hosp, Dept Hepatobiliary, Changsha 410008, Hunan, Peoples R China
[2] Cent S Univ, Xiangya Hosp, Enter Surg Res Ctr, Changsha 410008, Hunan, Peoples R China
[3] Cent S Univ, Xiangya Hosp, Dept Gen Surg, Changsha 410008, Hunan, Peoples R China
[4] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
nanometer materials; lithium-ion batteries; molten salt reaction; energy materials; nano-coating; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; ANODE MATERIALS; HETEROSTRUCTURES; COMPOSITE; STORAGE; GROWTH; NANOSHEETS; ARRAYS;
D O I
10.1016/S1003-6326(15)64076-6
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coating alpha-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low temperature of 300 degrees C. The as-prepared alpha-Fe2O3@SnO2 core-shell nanocomposites show enhanced electrochemical performances than the bare alpha-Fe2O3 nanoparticles. This involved metal oxide nanocoating method is easy to be carried out, and the heat treatment temperature is much lower than that of other traditional solid-state annealing method and many carbon or metal oxide nanocoating methods. The molten salt method may also be used to produce other metal oxides coating nanostructures as the electrode materials for lithium-ion batteries.
引用
收藏
页码:3651 / 3656
页数:6
相关论文
共 50 条
  • [31] Facile synthesis of Ag-Fe2O3 core-shell composite nanoparticles by an in situ method
    Sun, Youyi
    Yang, Binghua
    Tian, Ye
    Guo, Guizhen
    Cai, Wei
    He, Minghong
    Liu, Yaqing
    MICRO & NANO LETTERS, 2011, 6 (02) : 82 - 85
  • [32] Synthesis and characterization of Fe-Fe2O3 core-shell nanowires and nanonecklaces
    Lu, Lirong
    Ai, Zhihui
    Li, Jinpo
    Zheng, Zhi
    Li, Quan
    Zhang, Lizhi
    CRYSTAL GROWTH & DESIGN, 2007, 7 (02) : 459 - 464
  • [33] Synthesis of Ag/Fe2O3 Core-Shell Composite Nanoparticles by In-situ Method
    Guo Guizhen
    Yang Binhua
    Zhao Guizhe
    Sun Youyi
    Liu Yaqing
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (01) : 200 - 203
  • [34] Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles
    Yang, Lili
    Zou, Ping
    Cao, Jian
    Sun, Yunfei
    Han, Donglai
    Yang, Shuo
    Chen, Gang
    Kong, Xiangwang
    Yang, Jinghai
    SUPERLATTICES AND MICROSTRUCTURES, 2014, 76 : 205 - 212
  • [35] Structures and photocatalytic activity of α-Fe2O3@TiO2 core-shell nanoparticles
    Niu, Yongan
    Li, Manyuan
    Jia, Xueyan
    Shi, Zihang
    Liu, Haixiong
    Zhang, Xin
    SOLID STATE COMMUNICATIONS, 2022, 345
  • [36] Low-temperature synthesis of calcium hexaboride nanoparticles via magnesiothermic reduction in molten salt
    Bao, Ke
    Lin, Liangxu
    Chang, Hong
    Zhang, Shaowei
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2017, 125 (12) : 866 - 871
  • [37] Study on Synthesis and Characterization of Magnetic ZnFe2O4@SnO2@TiO2 Core-shell Nanoparticles
    Yoo, Jeong-Yeol
    Park, Seon-A
    Jung, Woon-Ho
    Park, Seong-Min
    Tae, Gun-Sik
    Kim, Jong-Gyu
    APPLIED CHEMISTRY FOR ENGINEERING, 2018, 29 (06): : 710 - 715
  • [38] Controlled synthesis of monodisperse core-shell γ-Fe2O3@SiO2 nanoparticles with well-dispersed γ-Fe2O3 seeds
    Li, Keran
    Yan, Jiahe
    Luo, Lang
    He, Zhiheng
    Zhou, Lingling
    Gao, Feng
    MICRO & NANO LETTERS, 2020, 15 (04) : 255 - 257
  • [39] Low-temperature synthesis of α-Fe2O3 nanoparticles with a closed cage structure
    Wang, X
    Chen, XY
    Ma, XC
    Zheng, HG
    Ji, MR
    Zhang, Z
    CHEMICAL PHYSICS LETTERS, 2004, 384 (4-6) : 391 - 393
  • [40] Hydrothermal synthesis and microwave absorption properties of Fe3O4@SnO2 core-shell structured microspheres
    Wang, Yanping
    Peng, Zheng
    Jiang, Wei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (07) : 4880 - 4887