Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

被引:30
|
作者
Koziol, Conrad P. [1 ,2 ]
Arnold, Neil [1 ]
机构
[1] Scott Polar Res Inst, Cambridge, England
[2] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland
来源
CRYOSPHERE | 2018年 / 12卷 / 03期
基金
英国自然环境研究理事会;
关键词
ANNUAL GLACIOHYDROLOGY CYCLE; SUPRAGLACIAL LAKE DRAINAGES; SUBGLACIAL DRAINAGE; SURFACE MELT; GLACIER HYDROLOGY; WEST GREENLAND; OUTLET GLACIER; ABLATION ZONE; BASAL MOTION; FLOW MODEL;
D O I
10.5194/tc-12-971-2018
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25% increase in annual surface velocities as surface melt increases to 4 x present levels.
引用
收藏
页码:971 / 991
页数:21
相关论文
共 50 条
  • [21] Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet
    Crozier, Josh
    Karlstrom, Leif
    Yang, Kang
    CRYOSPHERE, 2018, 12 (10): : 3383 - 3407
  • [22] Direct measurements of meltwater runoff on the Greenland ice sheet surface
    Smith, Laurence C.
    Yang, Kang
    Pitcher, Lincoln H.
    Overstreet, Brandon T.
    Chu, Vena W.
    Rennermalm, Asa K.
    Ryan, Jonathan C.
    Cooper, Matthew G.
    Gleason, Colin J.
    Tedesco, Marco
    Jeyaratnam, Jeyavinoth
    van As, Dirk
    van den Broeke, Michiel R.
    van de Berg, Willem Jan
    Noel, Brice
    Langen, Peter L.
    Cullather, Richard I.
    Zhao, Bin
    Willis, Michael J.
    Hubbard, Alun
    Box, Jason E.
    Jenner, Brittany A.
    Behar, Alberto E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (50) : E10622 - E10631
  • [23] Trapped meltwater affects mass loss of Greenland ice sheet
    Livingstone, Stephen J.
    NATURE, 2022, 607 (7920) : 659 - 660
  • [24] Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison
    Steger, Christian R.
    Reijmer, Carleen H.
    van den Broeke, Michiel R.
    Wever, Nander
    Forster, Richard R.
    Koenig, Lora S.
    Munneke, Peter Kuipers
    Lehning, Michael
    Lhermitte, Stef
    Ligtenberg, Stefan R. M.
    Miege, Clement
    Noel, Brice P. Y.
    FRONTIERS IN EARTH SCIENCE, 2017, 5
  • [25] Meltwater export of prokaryotic cells from the Greenland ice sheet
    Cameron, Karen A.
    Stibal, Marek
    Hawkings, Jon R.
    Mikkelsen, Andreas B.
    Telling, Jon
    Kohler, Tyler J.
    Gozdereliler, Erkin
    Zarsky, Jakub D.
    Wadham, Jemma L.
    Jacobsen, Carsten S.
    ENVIRONMENTAL MICROBIOLOGY, 2017, 19 (02) : 524 - 534
  • [26] Trapped meltwater affects mass loss of Greenland ice sheet
    Stephen J. Livingstone
    Nature, 2022, 607 : 659 - 660
  • [27] Sensitivities of the West Greenland Current to Greenland Ice Sheet Meltwater in a Mesoscale Ocean/Sea Ice Model
    Morrison, Theresa J.
    Mcclean, Julie L.
    Gille, Sarah T.
    Maltrud, Mathew E.
    Ivanova, Detelina P.
    Craig, Anthony P.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2024, 54 (07) : 1329 - 1346
  • [28] Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release
    van As, Dirk
    Mikkelsen, Andreas Bech
    Nielsen, Morten Holtegaard
    Box, Jason E.
    Liljedahl, Lillemor Claesson
    Lindback, Katrin
    Pitcher, Lincoln
    Hasholt, Bent
    CRYOSPHERE, 2017, 11 (03): : 1371 - 1386
  • [29] Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
    Charbit, Sylvie
    Dumas, Christophe
    Maignan, Fabienne
    Ottle, Catherine
    Raoult, Nina
    Fettweis, Xavier
    Conesa, Philippe
    CRYOSPHERE, 2024, 18 (11): : 5067 - 5099
  • [30] Extensive liquid meltwater storage in firn within the Greenland ice sheet
    Forster R.R.
    Box J.E.
    Van Den Broeke M.R.
    Miège C.
    Burgess E.W.
    Van Angelen J.H.
    Lenaerts J.T.M.
    Koenig L.S.
    Paden J.
    Lewis C.
    Gogineni S.P.
    Leuschen C.
    McConnell J.R.
    Nature Geoscience, 2014, 7 (2) : 95 - 98