We show that a minimal surface of general type has a canonical symplectic structure (unique up to symplectomorphism) which is invariant for smooth deformation. We show that the symplectomorphism type is also invariant for deformations which allow certain normal singularities, provided one remains in the same smoothing component. We use this technique to show that the Manetti surfaces yield examples of surfaces of general type which are not deformation equivalent but are canonically symplectomorphic.
机构:
Univ Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, LuxembourgUniv Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
Schatz, Florian
Zambon, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B Box 2400, BE-3001 Leuven, BelgiumUniv Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
机构:
Univ Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, LuxembourgUniv Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
Schatz, Florian
Zambon, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B Box 2400, BE-3001 Leuven, BelgiumUniv Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg