Surface modification of spinel Li4Ti5O12 with Fe for lithium ion batteries

被引:6
|
作者
Wang, B. F. [1 ]
Cao, J. [1 ]
Liu, Y. [1 ]
机构
[1] Shanghai Univ Elect Power, Shanghai 200090, Peoples R China
关键词
Surface modification; Spinel Li4Ti5O12; Lithium ion batteries; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; RATE CAPABILITY; COMPOSITE; ELECTRODE; STORAGE;
D O I
10.1179/1753555713Y.0000000106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Special capacity and cycling performance of spinel Li4Ti5O12 anode material were improved by surface modification with Fe through a facile method. The phase structures, morphologies and electrochemical performance of pristine and Fe modified Li4Ti5O12 were investigated by Xray diffraction, scanning electron microscopy, Energy dispersive X-ray spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge tests. Electrochemical measurements demonstrated that the Li4Ti5O12/Fe electrode displayed enhanced special capacity and cycling performance compared with those of pristine Li4Ti5O12. The special capacity of Li4Ti5O12/Fe is 123.4 mAh g(-1) at 5C rate, much higher than 59.5 mAh g 21 of the pristine material. The Fe modified Li4Ti5O12 anode also showed superior cycling stability with an initial discharge capacity of 141 mAh g(-1) at 2C rate and still maintained 96.7% of its initial capacity after 300 cycles.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [21] Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries
    Medina, P. A.
    Zheng, H.
    Fahlman, B. D.
    Annamalai, P.
    Swartbooi, A.
    le Roux, L.
    Mathe, M. K.
    SPRINGERPLUS, 2015, 4
  • [22] Challenges of Spinel Li4Ti5O12 for Lithium-Ion Battery Industrial Applications
    Yuan, Tao
    Tan, Zhuopeng
    Ma, Chunrong
    Yang, Junhe
    Ma, Zi-Feng
    Zheng, Shiyou
    ADVANCED ENERGY MATERIALS, 2017, 7 (12)
  • [23] Electrostatic spray deposition of spinel Li4Ti5O12 thin films for rechargeable lithium batteries
    Yu, Y
    Shui, JL
    Chen, CH
    SOLID STATE COMMUNICATIONS, 2005, 135 (08) : 485 - 489
  • [24] Cost effective surface passivation film construction on Li4Ti5O12 anode of lithium ion batteries
    Wu, Ke
    Qian, Li
    Sun, Xiaoman
    Lei, Xiangli
    Wu, Ningning
    Zhao, Hailei
    Zhang, Yingchun
    ELECTROCHIMICA ACTA, 2018, 260 : 40 - 46
  • [25] Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries
    Zhang, Hao
    Yang, Yang
    Xu, Hong
    Wang, Li
    Lu, Xia
    He, Xiangming
    INFOMAT, 2022, 4 (04)
  • [26] Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries
    Liu, Jian
    Li, Xifei
    Yang, Jinli
    Geng, Dongsheng
    Li, Yongliang
    Wang, Dongniu
    Li, Ruying
    Sun, Xueliang
    Cai, Mei
    Verbrugge, Mark W.
    ELECTROCHIMICA ACTA, 2012, 63 : 100 - 104
  • [27] Modification studies on the novel anode material Li4Ti5O12 with characteristic of fleetly charging for lithium ion batteries
    Yu Hai-Ying
    Xie Hai-Ming
    Yang Gui-Ling
    Yan Xue-Dong
    Wang Rong-Shun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2007, 28 (08): : 1556 - 1560
  • [28] Synthesis and characterization Li4Ti5O12 for Li-ion batteries
    Yilmaz, Mehmet
    Aydin, Serdar
    Turgut, Guven
    Yurtcan, Mustafa Tolga
    Demir, Yasar
    Ertugrul, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 28 (01): : 411 - 416
  • [29] Electrochemical and spectroscopic characterization of lithium titanate spinel Li4Ti5O12
    Schneider, Holger
    Maire, Pascal
    Novak, Petr
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9324 - 9328
  • [30] Research on carbon-coated Li4Ti5O12 material for lithium ion batteries
    Kim, Ju Bin
    Kim, Dong Jin
    Chung, Kyung Yoon
    Byun, Dongjin
    Cho, Byung Won
    PHYSICA SCRIPTA, 2010, T139