A faster FPT algorithm for 3-path vertex cover

被引:35
|
作者
Katrenic, Jan [1 ,2 ]
机构
[1] Ness Technol, Ness Kosice Dev Ctr, Bratislava, Slovakia
[2] Safarik Univ, Inst Comp Sci, Kosice, Slovakia
关键词
Fixed-parameter algorithm; Path vertex cover; Dissociation number; Branch and reduce; Analysis of algorithms; Computational complexity; Graph algorithms; APPROXIMATION ALGORITHM; COMPLEXITY;
D O I
10.1016/j.ipl.2015.12.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The k-path vertex cover of a graph G is a subset S of vertices of G such that every path on k vertices in G contains at least one vertex from S. Denote by psi(k)(G) the minimum cardinality of a k-path vertex cover set in G. The minimum k-path vertex cover problem (k-PVCP) is to find a k-path vertex cover of size psi(k)(G). In this paper we present an FPT algorithm to the 3-PVCP with runtime O(1.8172(s)n(O(1))) on a graph with n vertices. The algorithm constructs a 3-path vertex cover of size at most s in a given graph G, or reports that no such 3-path vertex cover exists in G. This improves previous O (2(s)n(O(1))) upper bound by Tu [5] and O(1.882(s)n(O(1))) upper bound by Wu [13]. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:273 / 278
页数:6
相关论文
共 50 条
  • [41] A simple local 3-approximation algorithm for vertex cover
    Polishchuk, Valentin
    Suomela, Jukka
    INFORMATION PROCESSING LETTERS, 2009, 109 (12) : 642 - 645
  • [42] Long directed (s, t)-path: FPT algorithm
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    Zehavi, Meirav
    INFORMATION PROCESSING LETTERS, 2018, 140 : 8 - 12
  • [43] Minimum k-path vertex cover
    Bresar, Bostjan
    Kardos, Frantisek
    Katrenic, Jan
    Semanisin, Gabriel
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1189 - 1195
  • [44] On kernels for d-path vertex cover
    Cerveny, Radovan
    Choudhary, Pratibha
    Suchy, Ondrej
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 144
  • [45] (Strong) Rainbow Connection on the Splitting of 3-Path
    Septyanto, F.
    Sugeng, K. A.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [46] An Improved FPT Algorithm and Quadratic Kernel for Pathwidth One Vertex Deletion
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    PARAMETERIZED AND EXACT COMPUTATION, 2010, 6478 : 95 - 106
  • [47] An Improved FPT Algorithm and a Quadratic Kernel for Pathwidth One Vertex Deletion
    Marek Cygan
    Marcin Pilipczuk
    Michał Pilipczuk
    Jakub Onufry Wojtaszczyk
    Algorithmica, 2012, 64 : 170 - 188
  • [48] An Improved FPT Algorithm and a Quadratic Kernel for Pathwidth One Vertex Deletion
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    ALGORITHMICA, 2012, 64 (01) : 170 - 188
  • [49] Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover
    Akiba, Takuya
    Iwata, Yoichi
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 211 - 225
  • [50] Regularity of 3-Path Ideals of Trees and Unicyclic Graphs
    Kumar, Rajiv
    Sarkar, Rajib
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)