Broadband Purcell factor enhancements in photonic-crystal ridge waveguides

被引:19
|
作者
Patterson, M. [1 ]
Hughes, S. [1 ]
Dalacu, D. [2 ]
Williams, R. L. [2 ]
机构
[1] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
[2] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 12期
关键词
SINGLE QUANTUM-DOT; SLOW LIGHT; LOW-DISPERSION; NANOCAVITIES; EMISSION; DISORDER; CAVITY;
D O I
10.1103/PhysRevB.80.125307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce the concept and theory for a photonic-crystal ridge waveguide in high index semiconductors that can be used to tailor the single-photon emission of an embedded quantum dot. The design exploits a band structure with a large bandwidth of slow light. By tuning the device geometry, the group velocity of the fundamental waveguide mode and the Purcell factor (enhanced spontaneous emission) can be uniquely controlled. We give reference designs with a Purcell factor of at least 10 and 43 with a large bandwidth of 435 and 51 GHz (similar to 1.8 meV and 0.21 meV), respectively. Applications toward chip-based single-photon emitters are discussed, and a comparison with dispersion-engineered planar photonic-crystal waveguides is also given.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Radiation loss of coupled-resonator waveguides in photonic-crystal slabs
    Povinelli, M. L.
    Fan, Shanhui
    APPLIED PHYSICS LETTERS, 2006, 89 (19)
  • [42] Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides
    Javadi, Alisa
    Garcia, Pedro D.
    Sapienza, Luca
    Maibom, Sebastian
    Thyrrestrup, Henri
    Lodahl, Peter
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [43] Radiation loss of coupled-resonator waveguides in photonic-crystal slabs
    Povinelli, A. L.
    Fan, Shanhui
    PHOTONIC CRYSTAL MATERIALS AND DEVICES VI, 2007, 6480
  • [44] How does slow light propagate in a real photonic-crystal waveguides?
    Mazoyer, S.
    Hugonin, J. P.
    Lalanne, P.
    Beggs, D. M.
    Krauss, T. F.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES IX, 2010, 7713
  • [45] Roughness losses and volume-current methods in photonic-crystal waveguides
    S. G. Johnson
    M. L. Povinelli
    M. Soljačić
    A. Karalis
    S. Jacobs
    J. D. Joannopoulos
    Applied Physics B, 2005, 81 : 283 - 293
  • [46] Observation of slow light in glide-symmetric photonic-crystal waveguides
    Patil, Chirag Murendranath
    Arregui, Guillermo
    Mechlenborg, Morten
    Zhou, Xiaoyan
    Alaeian, Hadiseh
    Garcia, Pedro David
    Stobbe, Soren
    OPTICS EXPRESS, 2022, 30 (08): : 12565 - 12575
  • [47] Wideband slow light in chirped slot photonic-crystal coupled waveguides
    Hou, Jin
    Wu, Huaming
    Citrin, D. S.
    Mo, Wenqin
    Gao, Dingshan
    Zhou, Zhiping
    OPTICS EXPRESS, 2010, 18 (10): : 10567 - 10580
  • [48] Disorder-Induced Multiple-Scattering In Photonic-Crystal Waveguides
    Mazoyer, S.
    Sauvan, C.
    Hugonin, J. P.
    Lalanne, P.
    THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2009), 2009, 1176 : 72 - 74
  • [49] Ultra-broadband mid-infrared supercontinuum generation in photonic-crystal pillar waveguides pumped at 1.82 μm
    Ma Ziyang
    Li Li
    Ni Xiaowu
    Optical and Quantum Electronics, 2021, 53
  • [50] Semiconductor-Based Photonic-Crystal Waveguides for Nonlinear Light Conversion
    Savchenko, G. M.
    Sokolovskii, G. S.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,